
Investigating Patterns for the Process-Oriented Modelling and Simulation of
Space in Complex Systems

Paul S. Andrews1, Adam T. Sampson3,
John Markus Bjørndalen4, Susan Stepney1, Jon Timmis1,2, Douglas N. Warren3 and Peter H. Welch3

1Department of Computer Science, University of York, UK, YO10 5DD
2Department of Electronics, University of York, UK, YO10 5DD

3Computing Laboratory, University of Kent, Canterbury, UK, CT2 7NF
4Department of Computer Science, University of Tromsø, Norway

psa@cs.york.ac.uk, A.T.Sampson@kent.ac.uk

Abstract

Complex systems modelling and simulation is becoming in-
creasingly important to numerous disciplines. The CoSMoS
project aims to produce a unified infrastructure for mod-
elling and simulating all sorts of complex systems, making
use of design patterns and the process-oriented programming
model. We provide a description of CoSMoS and present a
case study into the modelling of space in complex systems.
We describe how two models – absolute geometric space and
relational network space – can be captured using process-
oriented techniques, and how our models can be refactored to
allow efficient, distributed simulation. We identify a number
of design, implementation and refactoring patterns that can
be applied to future complex systems modelling problems.

Introduction
Complex systems consist of populations of low-level simple
agents that interact concurrently with each other and their
environment to exhibit high-level emergent behaviours. The
modelling and simulation of complex systems is becoming
increasingly important in a number of scientific disciplines.
Real-world experimentation is often expensive and time-
consuming; accurate simulations provide a powerful tool for
understanding complex systems, and their results can help to
direct future experimental work. There is therefore signifi-
cant interest in the development of more effective tools and
methodologies for modelling and simulation.

Under the banner of CoSMoS1 (Complex Systems Mod-
elling and Simulation infrastructure), we aim to develop a
modelling and simulation infrastructure to allow complex
systems to be designed, analysed and explored within a uni-
form framework. When completed, the CoSMoS system
will allow users, guided by our methodology, to design, de-
velop and analyse their own complex systems.

Our modelling process aims to be applicable to generic
complex systems, and will make use of patterns and refac-
torings. Our simulation environment will be massively-
concurrent and distributed through the use of the process-
oriented programming model. This is important as our final

1http://www.cosmos-research.org

infrastructure will be supported on a number of processing
platforms including FPGAs, general-purpose PCs and clus-
ters. We are adopting a case-study-based approach, mod-
elling and simulating many complex systems to identify the
necessary generic components. As we develop the case stud-
ies, we are consciously documenting and analysing how we
are developing the models and simulations to extract the
CoSMoS process. Through each case study this process is
refined and augmented as new situations arise.

A number of tools for complex systems modelling and
simulation already exist; for example, environments such
as Breve2 and Repast3 allow for the development of agent-
based complex systems simulations. The use of design pat-
terns to document reusable solutions to complex systems
modelling problems has previously been advocated by Wiles
et al. (2005). CoSMoS differs in that it will bring together
the modelling, simulation and analysis of generic complex
systems under a single unified framework. Additionally, the
massively-concurrent simulation environment will enable us
to get closer to the scale of real-world complex systems.

In the context of CoSMoS, this paper presents a ratio-
nale for our approach and describes some initial steps to-
wards achieving our aims. We start by describing why a
process-oriented approach is applicable to complex systems,
followed by some of the techniques we are employing in the
pursuit of engineering reusable elements. We then present
an investigation into space representations in various com-
plex systems, and show how space can be modelled and sim-
ulated using a process-oriented approach. Finally we look at
what our case study has shown us in relation to the aims of
CoSMoS by identifying the kinds of patterns and refactor-
ings that might be applicable to general complex systems.

A Process-Oriented Approach
In the process-oriented programming model, concurrent
processes interact using mechanisms such as channels and

2http://www.spiderland.org
3http://repast.sourceforge.net

Artificial Life XI 2008 17

barriers. Process-oriented programming has a formal basis
in process algebras such as CSP (Hoare, 1985) and the π-
calculus (Milner, 1999). As a result, the semantics of com-
munication and process composition are well-defined, and
the behaviour of process-oriented programs can be reasoned
about in a structured way. See Welch et al. (2006) for one
example of this.

As the real world consists of concurrent, interacting enti-
ties, communicating process calculi – and therefore process-
oriented programs – provide a natural way to construct mod-
els of the real world: entities map directly to processes, and
the interactions between them are modelled by communica-
tions. There has been much research into modelling com-
plex systems using process calculi such as the π-calculus
(Phillips and Cardelli, 2007); this suggests that process-
oriented programming techniques can be profitably applied
to complex systems modelling and simulation.

Concurrent programs are well-placed to take advantage
of multicore processors and multiprocessor hosts. The same
programming models can be used to construct distributed
systems; a process-oriented program can usually be refac-
tored into a form that runs efficiently on a cluster.

Concurrency is traditionally seen as hard for programmers
to get right, but this need not be the case. In a process-
oriented system, a compiler can guarantee that processes are
isolated from each other, and must communicate explicitly
rather than sharing data. Processes may communicate ref-
erences to data, but sending a reference to another process
causes it to be lost from the sender (data mobility). These
constraints combine to prevent common concurrency prob-
lems such as aliasing errors and race hazards. Other con-
currency problems such as deadlock can be dealt with using
simple design rules, proved correct by reference to the un-
derlying process calculi.

One such set of design rules is the client-server pattern,
in which client processes are connected to server processes
by two-way bundles of channels. After the client initiates a
communication, an arbitrary two-way conversation can take
place between the client and server. Processes may act as
both client and server, but they may be a client to only one
server at a time. If there are no cycles in the directed graph of
client-server relationships between a network of processes,
the network will be both deadlock- and livelock-free (Martin
and Welch, 1997). Many common patterns of concurrency –
such as pipelines – already obey the client-server rules, but
the rules also allow far more complicated process networks
to be constructed safely.

Initial work on CoSMoS has used the occam-π process-
oriented programming language4. In an occam-π implemen-
tation, process overheads are typically very small; a com-
modity PC can support millions of concurrent processes.
Process creation and deletion is cheap, and communication

4http://occam-pi.org/

is very efficient. This allows the programmer to take ad-
vantage of concurrency to simplify their program without
worrying about adversely affecting performance. occam-π
provides channel bundles as a language binding for client-
server relationships; the endpoints of channel bundles can be
communicated around at runtime (channel mobility), allow-
ing dynamically constructed and reconfigurable networks.

Engineering Reusable Complex Systems
To develop an engineering approach to the modelling and
simulation of generic complex systems, we must focus on
reusable problem-solving techniques. Reusable techniques
reduce the amount of work required in the development of
a complex system, and lessen the risk of mistakes during
specification or implementation. Additionally, because our
systems will be built using common building blocks, it will
be easier to combine models and simulations to study inter-
actions between complex systems.

Our main tool for achieving reusability is one of the most
successful and popular approaches in software engineering:
patterns. The original idea of patterns comes from archi-
tecture courtesy of Alexander et al. (1977), who describe a
pattern as “a problem which occurs over and over again in
our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution
a million times over, without ever doing it the same way
twice”. This idea was applied to object-oriented software
design by Gamma et al. (1995), who identify four essential
elements of a pattern:

Name: a brief phrase to summarise the pattern, and that can
be used as part of a pattern language when discussing
problems.

Problem: the situation in which the pattern may be applied.

Solution: the elements involved when solving the problem,
and a guide to their implementation.

Consequences: the advantages and disadvantages of apply-
ing the pattern, allowing the designer to make a decision
about the appropriateness of the pattern in their particular
situation.

Most existing uses of patterns in software engineering use
the object-oriented programming model, but patterns can be
applied equally effectively to process-oriented programming
and other models.

Although the original use of patterns in software engi-
neering was at the design stage (hence “design patterns”),
patterns have been developed for all stages of the software
development process, from low-level coding right up to the
design of development processes themselves. For example,
antipatterns (Brown et al., 1998) can be used to document
common mistakes and how they can be avoided and recti-
fied. Other patterns include analysis patterns (Fowler, 1997),

Artificial Life XI 2008 18

coding patterns (Beck, 1997), and metapatterns that describe
patterns themselves. Our modelling process aims to take ad-
vantage of patterns wherever possible, and in particular to
develop pattern languages for: abstract computational repre-
sentations of complex systems models; analysis of collective
and emergent properties; and validity argument structures.

We are not alone in wanting to apply patterns in the field
of complex systems. Wiles et al. (2005) suggest that atten-
tion to software engineering practice can benefit both mod-
ellers and biologists. We are in complete agreement with
their assertion that the field of in silico modelling is reach-
ing a point where common practices should be identified and
formalised into patterns.

Refactoring is a particularly interesting concept from a
patterns perspective. Refactoring is improving the structure
of a model or program without changing its external be-
haviour. For our purposes, such refactorings might include
improving the clarity of the model, or adapting simulations
to take advantage of FPGAs or clusters. These approaches
will be codified as refactoring patterns.

Space: a Case Study
As noted in the introduction, we have employed a case-
study-based methodology in our investigation of the issues
surrounding the modelling and simulation of complex sys-
tems. For the purposes of discussion in this section, we
define a model to be an abstract logical representation of
something we wish to better understand. A (computer) sim-
ulation is the execution of such a model over time, allowing
us to analyse the model’s behaviour.

The case study we describe here deals with the represen-
tation of space in a variety of different “textbook” complex
systems. By “textbook”, we mean well-understood exam-
ples of complex systems from the literature, such as boids
(Reynolds, 1987), artificial ant behaviour (Amos and Don,
2007), L-systems (Prusinkiewicz and Lindenmayer, 1990)
and scale-free networks (Barabasi and Bonabeau, 2003). We
have chosen to study space initially because we feel that it is
a universal property of complex systems models – and one
that can be expressed in a wide variety of ways. (Future case
studies will cover time and other commonalities.)

For millennia, philosophers have pondered the nature of
space in the real world. At the turn of the eighteenth cen-
tury, two very different views on space were held by New-
ton and Leibniz. Newton believed that space was absolute –
independent of the objects that could exist within it. Leibniz
defined space as relational – only existing in the relation-
ships among the objects it contains (Garber, 1995; Giavotto
and Michel, 2002).

In complex systems modelling, space is commonly repre-
sented using either of the Newton and Leibniz approaches.
For example, simulations such as boids and artificial ants
use an absolute geometric space, with a fixed area of space
being defined in which all the agents reside. L-systems and

scale-free networks, on the other hand, use a relative model
of space: the model’s idea of space comes solely from the
relationships between L-system symbols or network nodes,
and the geometry and size of space can change over time.
Hybrid models of space can be built in which absolute ge-
ometric space is modelled by a sparse network of regions,
created only when an agent or a behaviour requires their
presence (Sampson et al., 2005).

The meaning of points in a model’s representation of
space may correspond to locations in physical space (with
one, two or three dimensions), or to something more ab-
stract. For example, a point in absolute “shape-space”
(Perelson and Oster, 1979) could represent a set of parame-
ters describing the shape of a molecule in an immunological
model (Hart and Ross, 2004).

Space models such as absolute geometric space may be
continuous, or quantised into a grid of discrete positions.
Some models may be built on either space representation;
for example, interactions between cells in the bloodstream
may be modelled using distance calculations in continuous
space, or by looking at neighbouring cells in discrete space.
The choice of space representation – and, if a discrete model
is used, the fineness of the grid – will often affect the dynam-
ics of the model.

Previous Work
The TUNA project5 was the feasibility study that led to
CoSMoS, investigating tools for engineering emergent be-
haviour in nanite systems. The primary case study was the
simulation of artificial blood platelets, which would staunch
wounds in a blood vessel as an emergent behaviour. A num-
ber of different models were considered.

Initial efforts focused on cellular automata in one, two
and three dimensions. The first models used simple, deter-
ministic rules, and were built using the CSP process cal-
culus and analysed using FDR and Probe6. Later models
were extended to include platelet activation and diffusion
of chemical factors, and were implemented using occam-π.
The completed blood clotting simulation (Ritson and Welch,
2007) runs in three dimensions, using VTK7 for volumet-
ric visualisation, and allows the user to interactively cre-
ate wounds in the blood vessel. The program can be dis-
tributed across a cluster of commodity PCs, enabling simu-
lations with tens of millions of agents to run at acceptable
speeds. The resulting simulation demonstrates several be-
haviours seen in real-world haemostasis, and can be used to
perform simple in silico experiments.

Design patterns were developed for the efficient simula-
tion of grid-based space using process-oriented techniques,
in which space cells are represented as processes (Samp-
son et al., 2005). The construction of space processes can

5http://www.cs.york.ac.uk/nature/tuna/
6http://www.fsel.com/software.html
7http://www.vtk.org/

Artificial Life XI 2008 19

be delayed until agents move into them, allowing a sparse,
lazy representation of space. Agents can “sleep” by not
engaging in synchronisation when their state is unlikely to
change, saving processor time. Concurrent access to shared
resources can be managed safely using barrier synchronisa-
tion and phases (Barnes et al., 2005). Agents can migrate
transparently between different hosts in a cluster.

Modelling Continuous Space
The TUNA project examined grid-based models of space.
These are easy to reason about, but they are insufficiently
accurate for the purposes of many interesting models. Con-
tinuous space is generally more useful when modelling real-
world systems. In continuous space, it immediately becomes
harder for agents to find nearby agents with which to inter-
act; they cannot simply look in the neighbouring locations,
but must consider the distances between them. In a trivial
implementation of continuous space, all agents have knowl-
edge of all other agents, but this is inefficient (as well as a
poor model of the real world); we need a representation of
the world with an idea of locality. We would also like to
be able to take advantage of the space-modelling efficiency
patterns that were developed for TUNA.

As a first case study, we implemented the simulated bird
flocking model boids (Reynolds, 1987). At each time step,
boids adjust their velocity based on the following rules:

Collision Avoidance: avoid collisions with nearby objects

Velocity Matching: try to match velocity with nearby boids

Flock Centring: try to stay close to nearby boids

This results in the emergent flocking behaviour. We used
a two-dimensional model of space, although boids (and our
space model) would work equally well in three dimensions.

The approach we took was to divide the space up into re-
gions, with each region represented by a location process.
Each location contains an arbitrary number of agent pro-
cesses (boids and obstacles), and keeps track of a local po-
sition for each, relative to the centre of the region. Loca-
tions are connected much as cells are in a grid-based model;
each location process has a shared channel bundle which its
neighbours have access to, and provides a server interface
that allows clients to enter a cell, move around, and retrieve
a list of agents along with their positions.

The first thing that each boid must do on each timestep is
to “look around” for other agents in its neighbourhood. To
do this, the boid needs to gather the contents of all the cells
that intersect with the region it can see. We have restricted
our agents to seeing a circular region with a diameter of at
most one location, which means that it is sufficient to look
at the location the agent is in and the eight surrounding lo-
cations. Figure 1 shows a boid’s field of vision in the parti-
tioned continuous space model.

Boid

Figure 1: A boid’s field of vision (dotted line) in the parti-
tioned continuous space

Since all agents in each location need to look at the same
set of nine locations, we can save some effort by delegating
this task to a shared viewer process. Each location has a
viewer process permanently attached to it, and on each time
step the viewer updates its view of the surrounding world.
The viewer process then provides a server interface to the
agents in the corresponding cell which allows the agents to
obtain their local view.

In order to guarantee that the agents see a consistent view
of the world, we must make sure that all the viewers are up-
dated after the agents have finished moving, but before they
look again at the start of the next time step. We therefore di-
vide each timestep into multiple phases, with a global barrier
synchronisation between each phase:

• In phase 1, the viewers request the contents of the sur-
rounding cells.

• In phase 2, the agents request their view from the viewers,
compute their new velocity, and send movement messages
to their locations.

Once a boid has looked around, it decides in which direc-
tion to move by sending a movement vector to its location.
The location responds by updating the boid’s position. If
the boid remains within the same location, no further ac-
tion is necessary. However, if the boid has moved outside
the bounds of the location, it must be moved into the next
location in the correct direction. This is achieved by the re-
sponse to a boid’s movement request being “you must move
into this location”. This approach makes it possible to move
across multiple locations in one movement step: upon entry,
the first new location can respond immediately with another
“you must move into this location” message, thus the agent
reaches the correct target location by an iterative process.

In order to avoid complicating every agent with code to
handle movement, we inserted an additional agent manager

Artificial Life XI 2008 20

process that hides the details of this from the agent itself.
The manager provides a simplified interface to the agent,
supporting only “move” and “look” requests. Adding this
level of indirection simplified later work: it made it possible
to have arbitrary behaviour inside the space model that is not
visible to the agent itself.

Distributed Continuous Space
We used pony (Schweigler, 2006) to distribute the boids sim-
ulation across a cluster of hosts, with each host simulating
a rectangular region of space modelled by several location
processes. pony provides networked channel bundles for
occam-π programs, with exactly the same semantics as lo-
cal channel bundles; the only visible difference is the signifi-
cantly increased latency compared to local communications.
To obtain good performance, it is generally best to engineer
a distributed application in such a way as to minimise the
number of cross-host communications, and perform cross-
host communications in parallel as far as possible.

To start with, we just modified the existing simulation to
set up the same network of processes across a distributed
application. The resulting simulation worked exactly as be-
fore, but ran very slowly; furthermore, it got even slower
as boids migrated between hosts. There were two major
sources of inefficiency:

• Neighbouring viewer processes must request the same
view information from a location on the other side of a
network link. For local communications this is not a prob-
lem, since only a reference is transferred; for network
communications the data must be copied.

• More seriously, agent processes continue to run on the
host they were started on, so once moved to a new host,
every communication they do is across a network link.

To solve the viewer problem, we applied the remote proxy
distributed computing pattern (Roth, 2002) in the form of
ghost processes, which cache the contents of a location on
the other side of a network link. Viewer and agent processes
that would ordinarily communicate with a remote location
are instead given a channel bundle to the corresponding lo-
cal ghost (which provides the same server interface as the
remote location). Since ghost processes must update their
cached contents before viewer processes try to read it, we
needed to introduce an additional phase to the simulation:

• In phase 1, the ghosts request the contents of their corre-
sponding locations.

• In phase 2, the viewers request the contents of the sur-
rounding cells.

• In phase 3, the agents request their view from the viewers
and send movement messages to their locations.

To solve the agent problem, we introduced the idea of
agent migration. In response to moving to a location on a
different host, an agent can be told to suspend itself: pack up
its internal state and terminate on the originating host. The
state is moved to the destination host, where a new agent
process is started using the existing state. This is straight-
forward to implement: when an agent attempts to move into
a ghost (rather than a real location), the ghost replies to the
agent with a “suspend” message, and then signals the real
target location to spawn a new process.

A sample process network at a host boundary in the final
model is shown in Figure 2. The cycle time of the resulting
simulation is approximately equal to that of the single-host
simulation plus the network latency. We ran the simulation
across a cluster of networked PCs: the cycle time remained
approximately constant as the simulation was scaled from
two to eight hosts. This is as expected, since each host only
needs to communicate with its immediate neighbours.

In order to increase performance further, we have experi-
mented with more efficient strategies for inter-host commu-
nication. Relaxing the normal CSP channel semantics for
networked channels to permit asynchronous delivery of mes-
sages means that channel communications no longer need to
be acknowledged by the receiving host, approximately halv-
ing the network latency and thus reducing the simulation cy-
cle time. Since network channels are only used by the ghost
processes, we can simply adjust the ghost protocol so that
it still behaves correctly with asynchronous communication.
In the future, we plan to experiment further with batching
of messages in order to reduce TCP overheads and permit
message compression.

Location LocationLocation

GhostGhost

Viewer

Manager

Boid

Figure 2: Process network at a host boundary in distributed
boids

Artificial Life XI 2008 21

Different Model, Same Space
To demonstrate the reuse of our space model, we imple-
mented a different complex system simulation on top of our
continuous space model. The complex system we chose was
ant-based annular sorting (Amos and Don, 2007), in which
ants sort eggs into rings by size by picking up poorly-placed
eggs and dropping them when they find a better location.

As with boids, we modelled ants and eggs as agent pro-
cesses. To allow ants to carry eggs, we extended our system
so that agents could pick up other agents (removing them
from their locations), and put them down elsewhere. No fur-
ther changes were necessary to the space model, suggesting
that it had potential for reuse in other similar simulations.

Our model of continuous space is generic enough that it
supports different kinds of agent with differing behaviours.
They might sense different aspects of the environment and
have different goals. The location and viewer processes re-
port the locations of all nearby agents, whereas the agent
manager and agent processes provide the specific agent be-
haviour. Additional sensory modes and/or noise could be
added to the underlying location and viewer architecture,
which agent processes can filter accordingly.

Constructing Network Space: Edges as Channels
Network space is an example of relational space in which
the network nodes are the space-defining objects. Networks
can be modelled very straightforwardly in a process-oriented
way: nodes are processes, and edges are channels. As an
example, we implemented L-systems (Prusinkiewicz and
Lindenmayer, 1990): rewriting systems based on a formal
grammar (a set of rules and symbols) that can be used to
model growth processes such as plant development and or-
ganism morphology. For example, a very simple grammar
might be defined as follows:

Symbols: A, B, +, −

Start symbol: A

Rules: (A→ B −A), (B → A+B)

Here we have two symbols A and B which are transformed
by the corresponding rules, and two symbols + and−which
do not change. By specifying a start symbol, we can itera-
tively apply the L-system rules in parallel so that our symbol
string grows with each iteration as follows:

Iteration 0: A

Iteration 1: B −A

Iteration 2: A+B −B −A

Iteration 3: B −A+A+B −A+B −B −A

L-systems are often visualised by translation into “turtle
graphics” instructions. For example, if we define variables

Figure 3: Example L-system after 4 iterations

to mean “move straight ahead one unit”, + to mean “turn
right 60◦” and − to mean “turn left 60◦”, we end up with
the visualisation shown in Figure 3.

We model an L-system as a process network in which the
L-system symbols are represented as separate processes con-
nected by channels. Here, the channels provide the ordering
of the L-system string. At each iteration of the L-system,
each process holding a variable symbol applies its corre-
sponding transition rule, and replaces itself with the pro-
cesses and channels corresponding to the expansion of the
symbol.

Figure 4 shows a step-by-step application of the B →
A + B transition rule. In the first step a new process is
spawned that contains the last symbol in the transition rule.
This process is then given the end of the right hand chan-
nel, and a new channel is created to connect this new pro-
cess to the original B process that is being transformed. We
work from the right-hand side of the rule so that the process
network re-configures from the inside, with the right hand
channel to the rest of the process network only having to be
rewired once. After the first new process is connected, we
work through the transition rule creating new processes and
channels and reconfiguring existing channels where neces-
sary. So, in our example, the next step involves inserting a
process containing a + symbol. As a last step, the original
process that has undergone the transition rule has its symbol
changed to the leftmost symbol in the rule – in this case, B
is changed to an A. New processes are created on demand
by a factory process.

The simulation is visualised on each iteration using a dis-
play process, which is connected to both ends of the chain of
symbol processes, forming a ring. To visualise the network,
the display process sends a channel end to the first symbol
process, which outputs its symbol down the channel, then
passes the channel end on to the next process. This repeats
until the channel end makes it all the way around the ring
and returns to the display process, which then knows it has
gathered the complete state of the network, and draws it to
the display using turtle graphics rules.

Constructing Network Space: Edges as Processes
A scale-free network is one in which some nodes are highly
connected, whilst most have few connections. There is no
notion of a typical node in the network: its properties are
independent of the number of nodes. Examples include

Artificial Life XI 2008 22

B

B B

+B B

+ BA

Figure 4: Network reconfiguration during a rule application

NEN

Figure 5: An implementation of an undirected edge, where
N denotes a node process and E an edge process

the World-Wide Web: nodes are pages, and edges are hy-
perlinks; research collaborations: nodes are scientists, and
edges are co-authorships; and protein regulatory networks:
nodes are proteins, and edges are interactions amongst pro-
teins (Barabasi and Bonabeau, 2003). They are scale-free
because their properties are similar regardless of how many
nodes are present in the network; for example, the distribu-
tion of path lengths between pairs of arbitrary nodes will not
change as more nodes are added. Barabasi et al. (2000) have
shown that by utilising a scheme known as preferential at-
tachment – in which nodes prefer to connect to other nodes
that are already well-connected – you can grow a generic
network that is scale-free.

In the L-systems example above, edges were represented
as channels. Channels in occam-π are directed, and are used
directly in the L-systems network to match the left-to-right
ordering of symbols. In a scale-free network, edges may
be undirecte with no natural ordering . We modelled this
by representing edges as processes with separate channels
connecting them to the nodes on each side; an example is
shown in Figure 5. This is a more flexible model, since there
is no need for an explicit ordering, and edges may have their
own behaviours if necessary. For example, if an edge needs
to be reconnected between a different pair of nodes, it can
take part in the decision and reconnection process itself.

To implement a growing scale-free network with prefer-
ential attachment, we start by creating two node processes
and linking them by an edge processes. Next a controller

process iteratively forks a new node process and connects it
to a pre-defined number of new edge processes. For each
new edge process, a randomly selected pre-existing node is
selected and connected to the edge process. This random
selection is biased towards highly connected nodes, thus im-
plementing preferential attachment.

In the same way that we can apply a continuous space
model to both boids and ant-based annular sorting, we can
easily adapt the scale-free network with preferential attach-
ment model to implement a small-world network (Watts and
Strogatz, 1998) instead. This reuses the same node and edge
processes, but changes the way they are connected together.

Space: the Results
Our space models produced several useful, reusable compo-
nents. Both space models were successfully applied to more
than one complex system example with minimal work. In
addition, we have identified a number of initial design pat-
terns, which we can can categorise into four groups: mod-
elling, implementation, optimisation and refactoring pat-
terns. Patterns we identified included:

Distributed Continuous Space (modelling): by dividing
continuous space into regions, we can efficiently imple-
ment local vision in a distributed simulation.

Agent Process (modelling): agents are modelled as concur-
rent processes that interact within a space. The space may
be modelled explicitly using additional processes, or may
be implicit in the relationships between the agents.

Factory Process (implementation): factory processes
spawn new processes at runtime in response to requests
from other processes. They provide a common context for
the newly-created processes, and hide details of creating,
configuring and connecting up new processes behind an
interface. (This is the process-oriented equivalent of the
abstract factory pattern (Gamma et al., 1995).)

Ghost Location (optimisation): when refactoring a simu-
lation to run in a distributed manner, a ghost process can
cache the contents of a remote location to avoid repeated
network communication. (This is an application of the
existing remote proxy pattern.)

Agent Migration (optimisation): in a distributed simula-
tion, an agent can be suspended and moved to a different
host, in order to minimise the number of network commu-
nications it must do.

Reification (refactoring): creating a process (a “thing”) to
represent a relationship between two other processes. For
example, a directed link between two processes can sim-
ply be a channel, but an undirected or buffered link can be
better modelled as a process.

In addition, we found possible patterns related to visualisa-
tion and the modelling of time, which we are investigating.

Artificial Life XI 2008 23

Conclusion
In this paper we have outlined CoSMoS, a planned mod-
elling and simulation infrastructure for the investigation of
generic complex systems. We are using the process-oriented
programming model, owing to the natural analogies be-
tween processes and complex system agents and the abil-
ity to construct massively-concurrent and distributed simula-
tions. CoSMoS will promote reusable modelling techniques
through the development of pattern languages.

We have studied the modelling and simulation of space in
complex systems in the context of reusable modelling tech-
niques. We have shown how two very different spaces, a
geometric continuous space and a arbitrary network space,
can be modelled and simulated in a reusable way, and have
identified a number of design and refactoring patterns.

The next step for CoSMoS will be to start modelling and
simulating some more detailed complex systems based on
real-world observations and data. This will help identify fur-
ther generic complex system components, and aid the devel-
opment and validation of our method and toolset.

Acknowledgements
This work is part of the CoSMoS project, funded by EPSRC
grant EP/E053505/1 and a Microsoft Research Europe PhD
studentship.

References
Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M.,

Fiksdahl-King, I., and Angel, S. (1977). A Pattern Language.
Oxford University Press.

Amos, M. and Don, O. (2007). An ant-based algorithm for annular
sorting. In Proceedings of the 2007 IEEE Congress on Evo-
lutionary Computation (CEC), pages 142–148. IEEE Press.

Barabasi, A., Albert, R., and Jeong, H. (2000). Scale-free charac-
teristics of random networks: the topology of the world-wide
web. Physica A, 281:69–77.

Barabasi, A. and Bonabeau, E. (2003). Scale-free networks. Sci-
entific American, 288:60–69.

Barnes, F. R. M., Welch, P. H., and Sampson, A. T. (2005). Barrier
synchronisation for occam-pi. In 2005 International Confer-
ence on Parallel and Distributed Processing Techniques and
Applications (PDPTA), pages 173–179. CSREA Press.

Beck, K. (1997). Smalltalk Best Practice Patterns. Prentice Hall.

Brown, W. J., Malveau, R. C., McCormick III, H. W., and Mow-
bray, T. J. (1998). AntiPatterns: refactoring software, archi-
tectures, and projects in crisis. Wiley.

Fowler, M. (1997). Analysis Patterns: reusable object models. Ad-
dison Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley.

Garber, D. (1995). Leibniz: Physics and philosophy. In Jolley,
D., editor, The Cambridge Companion to Leibniz. Cambridge
University Press.

Giavotto, J. and Michel, O. (2002). Data structures as topological
spaces. In 3rd International Conference on Unconventional
Models of Computation (UMC02), pages 137–150. Springer.

Hart, E. and Ross, P. (2004). Studies on the implications of shape-
space models for idiotypic networks. In 3rd international
Conference on Artificial Immune Systems (ICARIS04), pages
413–426. Springer.

Hoare, C. A. R. (1985). Communicating Sequential Processes.
Prentice Hall.

Martin, J. M. R. and Welch, P. H. (1997). A Design Strategy for
Deadlock-Free Concurrent Systems. Transputer Communi-
cations, 3(4).

Milner, R. (1999). Communicating and Mobile Systems: The π-
calculus. Cambridge University Press.

Perelson, A. S. and Oster, G. F. (1979). Theoretical studies of
clonal selection: Minimal antibody repertoire size and relia-
bility of self–non-self discrimination. Journal of Theoretical
Biology, 81(4):645–670.

Phillips, A. and Cardelli, L. (2007). Efficient, correct simulation of
biological processes in the stochastic pi-calculus. In Compu-
tational Methods in Systems Biology (CMSB07), pages 184–
199. Springer.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithmic
Beauty of Plants. Springer-Verlag.

Reynolds, C. W. (1987). Flocks, herds, and schools: A dis-
tributed behavioral model. In 14th Annual Conference
on Computer Graphics and Interactive Technologies (SIG-
GRAPH87), pages 25–34. ACM.

Ritson, C. G. and Welch, P. H. (2007). A process-oriented archi-
tecture for complex system modelling. In Communicating
Process Architectures 2007, pages 249–266. IOS Press.

Roth, J. (2002). Patterns of mobile interaction. Personal Ubiqui-
tous Computing, 6(4):282–289.

Sampson, A. T., Welch, P. H., and Barnes, F. R. M. (2005). Lazy
Cellular Automata with Communicating Processes. In Com-
municating Process Architectures 2005, pages 165–175. IOS
Press.

Schweigler, M. (2006). A Unified Model for Inter- and Intra-
processor Concurrency. PhD thesis, Computing Laboratory,
University of Kent, Canterbury, UK.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of
’small-world’ networks. Nature, 393:440–442.

Welch, P. H., Barnes, F. R. M., and Polack, F. A. C. (2006). Com-
municating complex systems. In 11th IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS06). IEEE Press.

Wiles, J., Geard, N., Watson, J., Willadsen, K., Mattick, J., Bradlet,
D., and Hallinan, J. (2005). There’s more to a model than
code: understanding and formalizing in silico modeling ex-
perience. In 2005 Workshops on Genetic and Evolutionary
Computation (GECCO), pages 281–288. ACM.

Artificial Life XI 2008 24

