
Environment Orientation: An

Architecture for Simulating

Complex Systems

Tim Hoverd and Susan Stepney

Department of Computer Science, University of York, UK, YO10 5DD
{tim.hoverd,susan}@cs.york.ac.uk

Abstract. A näıve implementation of a complex system simu-
lation with its plethora of interacting agents would be to rep-
resent those interactions as direct communications between the
agents themselves. Considerations of the real world that a com-
plex system inhabits shows that agent interactions are actually
mediated by the environment within which they are embedded
and which embodies facilities used by the agents. This suggests
an “environment oriented” simulation architecture.

Here we motivate and describe an abstract software architecture
for an environment oriented approach to complex systems sim-
ulation, and sketch the implementation of this architecture in a
number of different ways.

1 Introduction

Complex systems comprise of a number of agents that interact in some
particular environment. The behaviour of any individual agent is rela-
tively simple and local. A complex global behaviour emerges as a conse-
quence the interaction of a large number of such agents in a particular
environment.

A complex system can be simulated using computational devices to
provide an executable model of the real world situation. Like all such
models it should be constructed in manner that can feasibly be imple-
mented, and may well avoid many real world details. However, such a
model must encapsulate the key interactions between agents from which
emerges the global behaviour.



68 Hoverd and Stepney

2 Motivation

Complex systems get their emergent behaviour from interactions be-
tween the agents that comprise the system. Näıve implementation mod-
els therefore describe direct interactions between those agents.

Such an approach, however, leads to many implementation difficul-
ties. Firstly, scaling the number of agents in a simulation to something
representative of the modelled world is infeasible, because the number
of communication channels required rapidly exceeds the capabilities of
the simulation. Secondly, and of particular importance here, if such a
model were to be implemented without detailed attention paid to con-
currency issues, then it would doubtless deadlock very quickly because
of the loops apparent in the agent/channel graph. Consequently, such
näıve implementations are never seen.

These deadlock issues are resolved in simulations by the introduction
of techniques, such as the “client server” pattern for concurrent systems
[1, 12] and barrier synchronisation [2], which impose a processing pattern
onto communications between the various components of the simulation.
These patterns seek to prevent the appearance of deadlocks.

In the case of the client server pattern components of the simulation
are coded so as to operate in a manner reminiscent of “client-server”
enterprise systems [21] or, more generally, multi-tier architectures [24].
In such systems the clients and the servers are layers in an architecture
where the servers provide a pre-defined set of services to the clients.
Each client is able to operate in a manner largely independent of others
because the implementation of the system constrains the overall pat-
terns of behaviour, for example by transactional access to an underlying
repository [26], in such a manner as to guarantee various overall system
properties.

Use of this convention introduces a pattern into the simulation that
does not at first sight appear to exist in the real world being modelled.
For example, the birds that flock above a city-centre park are not appar-
ently working to some standard global pattern lest they deadlock and
fall out of the sky. It appears that each bird is observing other birds
and then doing what it wants, when it wants, and in whatever order it
wants doing so in the sure and certain knowledge that its world really
is deadlock free. That is, it appears as if the real world of these birds is
rather different from a set of agents communicating with each other in
a simulation of, for example, bird flocking behaviour.

The rest of this paper looks in more detail at what is really going on
in a such a complex system, leading to some alternatives for the software
architecture of complex systems implementations.



Environment Orientation 69

3 Real world agents and their environment

3.1 Action at a distance versus mediating fields

Let us think about how the real world agents actually interact. Although
at first sight it is convenient to think about flocking birds interacting
directly some thought shows that in fact this is a simplification of what
is really going on.

A bird flying along reflects the ambient light into the space around it;
as it sings it pressurises the air about it. Another bird, assuming that it
is awake, is sensitive to the propagated light and air pressure, and in this
way can both see and hear the first bird. That is, these two birds are not
directly communicating with each other. The first is placing information
into its environment, which information can be detected by the second
bird when it observes its own environment, if it is interested in that sort
of information.

Such a view, which is essentially an alternative model of interaction
between the birds, relies upon a very detailed environment in which
the agents, in this case the birds, are embedded. One bird can always
come along and look in the environment and see what another bird is
frequently placing in the environment. A different bird might update the
environment only seldomly, if it is just sitting quietly on some perch.

The real world is such a detailed environment; one where fields in-
teract, photons pass each other and the rest of physics is implemented
with ease. In this view the agents are embodied in the environment [19],
and it provides services to those agents. Each agent just does what it
wants without regard to direct interactions with other agents. That is,
even in the real world, the agents in a complex system are interacting in
a manner reminiscent of a client server architecture. The environment
provides services to the agents, in a manner analogous to a server. The
agents are clients of those services.

The näıve model of a complex system, with agents directly interacting
with each other, is essentially “action at a distance”. One agent must
know directly what other agents exist that are interested in it and must
directly interact with those agents. As this is happening those distant
agents are also potentially interacting in the reverse direction.

Reflecting our observation of the real world, we instead take an “en-
vironment oriented” approach. Here agents do not interact directly, but
communicate through some mediating fields that exist in their environ-
ment. In this approach there is no direct interaction at all; the lives of
individual agents just affect each other by existing within the same set
of fields; within the same physics.



70 Hoverd and Stepney

As a different example of this “environment orientation” consider
an adaptive immune system. Here the agents are the various molecules
and cells that form the active components. The molecules are not di-
rectly signalling to each other about the feasibility of particular interac-
tions. In this case an environment oriented model would represent these
molecules by their concentrations in the environment which would af-
fect the probability of interactions occurring as a consequence of the
stochastic processes mediated by the environment.

3.2 State

The notion of “environment orientation” reflects the real world in a
useful manner. However, what is it that agents communicate with the
environment?

In something like a collection of birds flocking in the real world each
bird has a large and complex internal state: it knows whether it is flying
or not, how hungry it is, whether it needs to drink or defecate. But,
from the point of view of flocking, other birds are interested only in the
distances between the birds and what the perceived relative velocities of
the other birds are.

That is, each agent has an “internal state” that represents everything
it needs to know to behave appropriately. Further, each agent exposes an
“external state” to the environment, which is available to other agents in
the same environment. This external state could be simply a subset of the
agent’s internal state. For example, in the case of the bird it could just be
that part of the internal state that represents the position and velocity
of the bird. However, there are cases where the agent could deliberately
mislead other agents with its external state. For example, when one
insect species mimics another it is deliberately creating external state to
mislead observers about its internal state.

Complex system agents are essentially egocentric. That is, the emer-
gent behaviour appears as a consequence of each agent just doing what it
wants to do in its own environment. A flocking bird, then, does not know
precisely where it is, just merely where other birds are relative to it. In
a complex system simulation, something does need to know where the
agents are, because those positions are the overall context of execution
of the complex system. This context is the environment. That is, the
environment must know where each agent, is and therefore the environ-
ment will know what other agents are in the vicinity of each agent. That
is, the environment knows things about the agents that are not actually
part of the agent’s internal state. For example, a bird just thinks that
it is flying in the direction of an interesting looking food source, but the
environment knows that it is actually flying north-by-northwest.



Environment Orientation 71

A refinement to this notion is the observation that an agent generates
some external state just by virtue of the physics of its environment. For
example, photons just bounce off a bird, so other birds can see it, and
are also able to infer position and velocity from those photons. This
“involuntary” external state is contrasted with other state placed into the
environment by an agent in a “voluntary” manner. Voluntary state could
be, in the example of birds, a song that is sung in response to hearing
the song of another bird of the same species (which it hears through
the mediating environment), sung maybe for territorial enforcement or
finding a mate.

3.3 Querying

In this environment oriented approach, each agent interacts with the
environment to access information about the other agents’ (external)
states. Simplistically, each agent “asks” the environment for information
about other relevant agents’ state (the agents it can see, or hear, for
example); this state information can then be used by the querying agent
to update its internal state appropriately.

The reply to such a query is a set of values in some topology [7],
which not only represents the set of all possible values but also describes
how the values might change.

For example, in a bird flocking example, one of the items in a query
result could represent a bird that is close to the querier. As such, the
environment can accurately describe the (relative) position of the nearby
bird and its velocity in terms of a three-dimensional Cartesian space.
Furthermore, the topology of the particular space used might show that
the nearby bird could move freely in the two horizontal dimensions but it
was constrained to move only upwards in the vertical dimension because
it is, at the moment, standing on the ground. That is, the reply to a
query about the position of the bird gives a precise position in a space,
but that space is further described by its extent and its shape.

If the bird being described is distant then the position of the bird
may not be accurately described; for example, it might be clear in what
direction the bird lies but its distance from the querier could be only
poorly known. Similarly, the velocity of the bird might be only poorly
described, if at all, as the velocity of a distant agent which appears
merely as a distant speck might be very hard to determine. In this case
the reply is again a position in a space. However, in this case that space
is two-dimensional being the surface of a portion of a sphere centred on
the querying agent. Because the distance to the observed bird cannot be
determined it cannot be moved inside or outside of that sphere.



72 Hoverd and Stepney

Here the simulated environment is acting as the embodiment of so-
phisticated functions performed in the real world by both the agent itself
and the environment. The agent itself detects the photons impinging on
its retinas from a distant bird and attempts to calculate size, distance
and velocity of the bird from those photons and, probably, experience in
these sorts of situations. The real world, that is the environment, affects
many aspects of the passage of those photons; it understands the albedo
of the distant bird and can calculate how photons from the Sun are re-
flected by the bird, and how effectively those photons are transferred to
the observing bird.

The environment oriented approach provides a way to separate con-
cerns between the agents and their environment. In a particular simula-
tion, the choice of what computation is performed by the environment,
and what by agents, is a modelling decision. Certain functions may be
embodied in the environment itself, and those calculations performed by
the environment. Alternatively, responsibility for those those functions
may be assigned to certain agents (either existing ones, or new ones
designed to support those functions).

The notion of the results of the query being embedded in a topology
allows the interaction between agents to follow a number of different
patterns simultaneously. The example given above is a purely spatial
one, the notion of space clearly being of significance in complex sys-
tems implementation as in [1]. However, the exact same query/response
model could be used for any interaction between agents in a complex sys-
tem. One extension of the simple spatial model is to note that a human
agent is physically “near” to a collection of other human agents but may
nonetheless communicate simply with other human agents whose tele-
phone numbers are in the first agent’s address book. That is, there are
two sorts of “nearness” here: one is physical nearness, the other is “com-
municable” nearness. For some aspects of complex systems behaviour
only the first sort of nearness would be relevant, for others both sets of
“near” agents might be important. (This example is inspired by Milner’s
bigraphical model designed to model both a spatial and a connectivity
configuration simultaneously [13].)

3.4 Environment orientation

In summary, the environment oriented approach to complex systems sim-
ulation eschews all representations of direct interactions between agents.
Rather, all agent behaviour is seen as mediated through the environment
within which all the agents are embedded; the essential rationale for this
being that this is the way that the real world is structured.



Environment Orientation 73

Although the notion of the role of the environment is based on obser-
vations of the real physical world, the particular agents and behaviours
that exist in a simulation is a modelling decision. Each simulation should
be constructed with the explicit knowledge of which aspects are to be
embodied in the environment.

Regardless of its particular role, each agent has an internal state,
representing what the agent knows of itself. It publicises some aspects
of its state, its “external state” to the environment within which it is
embedded. The agent may decide when to publicise its external state.
Agent behaviour is provided for by allowing the agent to retrieve, from
its environment, information about the external state of the agents with
which it is interacting. Consequently, the environment must be aware of
the agents with which each other agent can interact.

4 Software architectural styles

The “environment orientation” approach to complex systems must be
readily implementable to be of use as an implementation platform for
complex systems simulations. That is, we must define an abstract archi-
tecture that defines this sort of systems implementation.

The model as described is essentially a client server one. As has been
described, real world complex systems are inherently “client server” in
that the agents function essentially as clients of the environment.

A client server architecture is an appealing approach, since there
is considerable experience with this approach that forms the basis of
most high performance commercial computing. There are also several
standardised abstract client server architectures, such as the REST ar-
chitecture [4] that is the core of the Internet and the services it supports.
These show the value of defining services in this manner.

The server in an “environment orientation” complex systems imple-
mentation must provide services that:

1. retain the external state of agents
2. provide that external state to other agents as and when required

The second of these services must reflect what aspects of each agents’
external state is visible to a requesting agent. That is, the environment
must know which other agents are in the “neighbourhood” of a requesting
agent and must also know the topology of the result space in which to
embed responses to requests.

In addition to providing such services to its clients, that is the agents,
the environment may embody many aspects of the world that is being



74 Hoverd and Stepney

while (true)

{

Neighbourhood n = env.query(queryText,

<parameters drawn from internal state>)

internalState.update(n)

env.update(generateExternalState(internalState))

}

Fig. 1. Pseudo-code for agents using query oriented server

simulated or modelled. For example, if the complex system were mod-
elling ant communication via stigmergy [3] then the environment itself
could modify the external state of ant trails so that they decayed at the
appropriate rate. This approach is a particular modelling decision. Al-
ternatively, the ant trail might be modelled an agent; then it, and not
the environment, would implement the process of pheromone decay.

Some aspects of this sort of architecture are seen in [1] where the
implementation of various approaches to the representation of space in a
complex system are investigated. The related “boids” simulation (based
on [17]) uses a notion of “location” that is similar to the environment
oriented server discussed here.

The first of these services listed above is susceptible to many different
implementations, although the precise form of the delivered state is not
defined here.

For the second service, there are two strategies, relating to a possible
inversion of control. One approach would be for an agent that wishes to
see the external state of a set of other agents, to make a query of the
underlying “environment orientation” server. The query would provide
the server will all the information it needed, along with its knowledge
of the agents, to select the information required and provide it to the
agents. This strategy, referred to here as query oriented, is summarised
by the pseudo code in figure 1.

A complementary approach would be for agents to inform the server
of the sort of information they were interested in, and to have that
information delivered as and when it was available. In the meantime the
agent would carry on with its normal behaviour. This strategy, referred
to here as subscription oriented, is summarised by the pseudo code in
figure 2.

These two approaches have different characteristics. The query ori-
ented is appropriate for systems, perhaps like bird flocking simulation,
where an individual agent can always be sure that its environment will
change rapidly and apparently continuously. The subscription oriented



Environment Orientation 75

...

env.registerInterest(topic, callback)

...

void callback(Neighbourhood n)

{

internalState.update(n)

env.update(generateExternalState(internalState))

}

Fig. 2. Pseudo-code for agents using subscription oriented server

approach would be useful for systems where some information was avail-
able only occasionally and unpredictably, or where it was needed to “in-
terrupt” an agent from its normal activities. That is, in situations where
the particular environment was not changing apparently continuously.

In this abstract architecture, the server is the entire locus of inter-
agent concurrency. That is, the agents execute without consideration for
each other, simply relying on the server to provide pertinent information.
This is the approach used in the world’s largest commercial systems.

There are, though, at least two other issues that must be addressed
here.

The first concerns that of fairness. If an environment server is being
queried by a, potentially, very large number of clients then it must be
the case that requests from those clients are handled in a fair manner.
This is already an issue in multi-tier commercial systems and will not
be further addressed here as it seems likely that existing approaches will
satisfy the demands of a complex system simulation.

The second issue is that of time. Commercial systems are all “real
time” systems, in the sense that the clients are usually aware of what the
real world time is because that time is often pertinent to the processing
that is being carried out. For a complex systems simulation there are
further considerations. The simulation may run, as a whole, faster or
slower than real time. In particular, individual agents can run at different
rates from other agents, depending on how much processing they have
to do (an active flying flocking bird will require more processing time
to simulate unit time of its life than will an inactive perching sleeping
bird). That is, the simulation as a whole, and the components of the
simulation, are running in simulated time. As such, the “simulated time”
is properly part of the environment within which the simulation’s agents
are embedded. Hence, an environment server should also provide a time
service, that defines the current simulated time for each of the agents



76 Hoverd and Stepney

in the simulation. These agents can then, when necessary, consult the
current time and use that to influence their activities.

5 Implementations

The architecture discussion so far has been devoid of implementation
choices. The principal implementation choice is that of an environment
server that can

– support the agents’ external state where each item item of such state
is in essence a tuple that contains whatever information is necessary
for the particular application

– provide a means of accessing and distributing that state
– provide a mechanism for tracking the progress of simulated time

For example, in a bird flocking simulation each tuple retrieved by, or
presented to, an agent would include another agent’s relative position
and perceived velocity. Additional entries in the tuple would allow the
topology of the result space to be determined. For example, if the agent
in question was distant then the perceived velocity might well be repre-
sented in a single-dimensional space with very restricted possible changes
instead of the three-dimensional space that would be appropriate for the
velocities of nearby agents.

Regardless of these decisions, the data provided to a requesting agent
takes the form of tuples. There are several possible implementation
choices for how a server could provide the supply of tuples, described
below.

5.1 Tuple spaces

The Linda programming language was first proposed in the mid 1980s [6]
as a new way of handling concurrency and coordination. A running Linda
system provides a “tuple space” which is populated, and examined, by
a potentially large collection of concurrently executing agents. Linda
provides primitives allowing the connected agents both to query the tu-
plespace for tuples that match some expression and to block waiting for
an appropriate tuple to appear. As such the model supports both types
of server architecture discussed in a straightforward manner.

The Linda concepts have been implemented in a number of mod-
ern programming languages. For example, JavaSpaces [5, 11] provides
Linda-like facilities in the Java programming language as part of the Jini
infrastructure. Rinda [18] provides tuplespaces for Ruby. TSpaces [8] is
a simple implementation of the Linda ideas within Java from IBM.



Environment Orientation 77

A refinement of tuple spaces which is also relevant to this subject
is that of tuple centres [16]. Tuple centres are essentially the notion of
tuple spaces which have some behaviour. As such, a tuple centre could
be seen as the implementation of a particular environment server.

5.2 Publish/Subscribe systems

The publish/subscribe pattern [25] is frequently supported by enterprise
middleware, in particular by message oriented middleware [23]. For ex-
ample, the Java Message Server [15] provides publish/subscribe facilities
for users of the Java 2 Enterprise Edition. The publish/subscribe pattern
provides for a server to distribute information on a number of topics to
a number of connected clients. The pattern is often used, for example,
in trading systems where some clients might require to be informed of
changes in the prices of particular financial instruments when they occur.
This is a very similar situation to that described as here as subscription
oriented. A topic here could be, for example in the context of a bird
flocking system, “the state of agents in the vicinity”. Whenever one of
those agents does indeed move the agent that registered the topic could
be informed of a set of new tuples of information.

Publish/subscribe systems are used commercially in situations where
there is a very high data rate, such as the instrument/price situation de-
scribed above. As such they are also suitable for distributing information
in a complex system simulation.

5.3 RDBMS

The use of a relational database management system (RDBMS) is a
further possible implementation mechanism. Relational databases are
essentially large containers for tuples. Each table in the RDBMS is a set
of tuples with the same layout. Furthermore RDBMSs provide a highly
expressive declarative query language (SQL [9, 10]) and are commonly
used in situations where very high performance is required. As such they
provide an attractive mechanism for the query oriented approach to the
abstract architecture.

It is less clear how an RDBMS could be used for the subscription
oriented architectural pattern. RDBMSs do support mechanisms that
are capable of use in this manner (typically, triggers). However, they are
clumsy in use and probably not suitable for the very flexible scenarios
of complex systems.



78 Hoverd and Stepney

5.4 Process oriented programming languages

Process oriented programming is at the heart of the CoSMoS1 project (of
which this work is part). The environment oriented architecture could
be implemented using a process oriented language such as occam-π [20].
This is the language used for the models of space described in [1]. Using
occam-π to implement simulations with the environment oriented archi-
tecture would ideally require the definition of a set of standard libraries
that would hide many of the internal details, and allow the programmer
to operate at a higher level of abstraction, purely in terms of things like
tuples and queries.

6 Prototypes

We have implemented prototype complex systems simulations following
the environment oriented architectural style. These prototypes have ex-
plored only the query oriented approach to the server. In particular, two
prototype systems have been implemented, each of which is an imple-
mentation, in Java, of Reynolds’ Boids [17], a very simple set of rules to
simulate flocking.

As yet neither of the prototypes has been subjected to significant
performance analysis and testing. In this first instance, we are simply
establishing the capabilities of the abstract architecture.

6.1 Tuplespace prototype

The first prototype is an implementation using TSpaces (chosen due to
the simplicity of configuring the server as compared with JavaSpaces).

The design of this system uses a single TSpaces server, running as
a separate heavyweight process (a process running under control of the
operating system and isolated from other such processes). A single boids
heavyweight process implements each boid with a separate thread (a
lightweight process not isolated from other such threads by operating sys-
tem mechanisms). Each such thread executes an instance of the pseudo-
code shown in figure 3, which is a simple variant of that shown in figure 1.

So each boid gets the tuples about boids in its neighbourhood, del-
egating the notion of what “its neighbourhood” means to the environ-
ment itself. As far as the boid is concerned it is querying for “all the
boids”. The environment knows where each boid is in the entire world
and answers a relative neighbourhood of the querier: the positions on
the boids in the returned neighbourhood are expressed relative to that

1 http://www.cosmos-research.org



Environment Orientation 79

while (true)

{

Neighbourhood n = env.query("allBoids")

Vector acceleration = n.centreOfMassRule() +

n.matchVelocityRule() +

n.repelBoidsRule()

velocity = velocity + acceleration

env.updateTuple(boidId, velocity)

wait(short_delay)

}

Fig. 3. Pseudo-code for Reynolds’ boids using query oriented server

of the querier. Furthermore, only the boids that are in what the envi-
ronment deems to be “the neighbourhood” of the querier are supplied
in the neighbourhood.

The boid uses the returned neighbourhood information to implement
the three rules of Reynolds’ algorithm, using the relative positions pro-
vided in the neighbourhood, to calculate its acceleration, which is ap-
plied to its internal state, here just the boid’s velocity. The environment
is then updated with its external state which in this simple example is
the same velocity. There is no “position” in this state, because the boid
is just where the boid is. It is up to the environment to know where the
boid actually is in world, which it can calculate from the boid’s velocity.

Nowhere in this pseudo-code, or in the Java code actually written,
is there anything about directly coordinating the activities of separate
boids. All of these details are delegated to the environment, which em-
bodies both a knowledge of the world as a whole, for example it knows
that it is a toroidal space, and of the perception of the boids, that is it
knows how far away a boid has to be to be deemed “not in the neighbour-
hood”. In this simple example, it is not necessary for the environment
to support a time server, as each boid agent performs the same amount
of processing to update its state.

A consequence of this lack of interaction between boids is that other
versions of the same code, ones where multiple boid agents are supported
by each thread, can been written. Each thread sequentially executes the
same code for each of the boids in its control. The behaviour of this
variant is essentially identical to the thread per boid version, although
requiring fewer threads.

The implementation of the environment is carried out by using a
façade object [22], in the boids process, that provides a layer above the
TSpaces server itself. This façade, in the TSpaces code, retrieves all of



80 Hoverd and Stepney

the boids from the server and filters them for locality before presentation
to the querier as the querier’s neighbourhood. It must be done this way
because the TSpaces query mechanisms are limited to essentially pat-
tern matching between a template tuple and the tuples in the server’s
tuplespace.

There are TSpaces mechanisms that could be used to implement an
“interrupt oriented” server but these have, as yet, not been investigated.

6.2 RDBMS prototype

A second prototype has also been constructed that uses an RDBMS,
specifically MySQL [14]. This prototype also functions well.

The code executed by the RDBMS version is much the same as for the
TSpaces variant. The difference, though, is in the environment façade.
The RDBMS version can be much simpler, as the process of filtering for
local boids may be done using SQL in the database query itself.

7 Future work

The architecture as described is the essential core of the environment
oriented approach to complex systems simulation. Future work will con-
centrate on two main issues.

The first issue is that of the appropriateness, or otherwise, of the two
architectural patterns, query orientation and subscription orientation.
This will be investigated by producing further prototype implementa-
tions that use each style, and combinations of the two.

The other issue is of more theoretical interest. When an agent makes
a query (which is logically the same as describing a topic on which it
will receive tuples in the subscription oriented architecture) then, as has
been described, the response essentially carries with it the topology of
the space in which the response is embedded. Realistic complex systems
are likely to either:

1. make multiple queries each of which generates a response in a differ-
ent space or

2. receive responses to a single query with varying topologies (such as
near and distant birds in a bird flocking example)

Future work will look at the issues relating to how the responses in dif-
ferent topologies are combined, if that is feasible, and what that implies
for more complicated complex systems which more closely represent the
details of the real world.



Environment Orientation 81

8 Conclusions

The agents in real world complex systems do not directly interact via
some “action at a distance”; they interact through the mechanisms me-
diated by a complicated environment in which they are all embedded.
Producing complex systems simulations in an environment oriented man-
ner uses environment implementations in which many complicated func-
tions of the agents are embedded. The use of the environment oriented
approach to complex systems simulation promises to raise the level of
abstraction in simulation development. This approach allows design to
avoid many details related to deadlock and communication. Other issues
become apparent, such as how to handle the varying resolution and ac-
curacy inherent in a typical complex real world situation. These issues
can potentially be represented as a set of topologies in which real work
values are embedded.

8.1 Acknowledgements

The work described here is part of the CoSMoS2 project, funded by
EPSRC grant EP/E053505/1 and a Microsoft Research Europe PhD
studentship.

References

[1] P. Andrews, A. Sampson, J. Bjørndalen, S. Stepney, J. Timmis, D. War-
ren, and P. Welch. Investigating patterns for the process-oriented mod-
elling and simulation of space in complex systems. In Artificial Life XI,
pages 17–24. MIT Press, 2008.

[2] Fred R. M. Barnes, Peter H. Welch, and Adam T. Sampson. Barrier
synchronisation for occam-pi. In Hamid R. Arabnia, editor, PDPTA,
pages 173–179. CSREA Press, 2005.

[3] J. L. Deneubourg and S. Goss. Collective patterns and decision-making.
Ethology, Ecology & Evolution, 1:295–311, 1989.

[4] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. ACM Trans. Inter. Tech., 2(2):115–150, May 2002.

[5] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles,
Patterns and Practice. Addison-Wesley, 1999.

[6] David Gelernter. Generative communication in Linda. ACM Trans. Pro-
gram. Lang. Syst., 7(1):80–112, January 1985.

[7] Jean-Louis Giavitto and Olivier Michel. Data structure as topological
spaces. In Proceedings of the 3rd International Conference on Unconven-
tional Models of Computation, pages 137–150, 2002.

2 http://www.cosmos-research.org



82 Hoverd and Stepney

[8] IBM. The TSpaces vision. http://www.almaden.ibm.com/cs/TSpaces/

html/Vision.html, accessed on 6th May, 2009.
[9] ISO. ISO/IEC 9075-1:1999: Information technology — Database lan-

guages — SQL — Part 1: Framework (SQL/Framework). 1999.
[10] ISO. ISO/IEC 9075-2:1999: Information technology — Database lan-

guages — SQL — Part 2: Foundation (SQL/Foundation). 1999.
[11] Jini. The community resource for Jini technology. http://www.jini.org,

accessed on 6th May, 2009.
[12] J. M. R. Martin and P. H. Welch. A design strategy for deadlock-free

concurrent systems. Transputer Communications, 3(4), 1997.
[13] Robin Milner. The Space and Motion of Communicating Agents. CUP,

2009.
[14] MySQL. Open source database. http://www.mysql.com, accessed on 6th

May, 2009.
[15] Sun Developer Network. Java Message Service (JMS). http://java.

sun.com/products/jms/, accessed on 6th May, 2009.
[16] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres.

Sci. Comput. Program., 41(3):277–294, 2001.
[17] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral

model. Computer Graphics, 21(4):25–34, 1987.
[18] Masatoshi Seki. dRuby and Rinda: Implementation and Application of

Distributed Ruby and its Parallel Coordination Mechanism. International
Journal of Parallel Programming, 37(1):37–57, 2009.

[19] Susan Stepney. Embodiment. In Darren Flower and Jon Timmis, editors,
In Silico Immunology, chapter 12, pages 265–288. Springer, 2007.

[20] Peter H. Welch and Fred R. M. Barnes. Communicating mobile processes.
In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, 25 Years
Communicating Sequential Processes, volume 3525 of LNCS, pages 175–
210. Springer, 2004.

[21] Wikipedia. Client server architecture. http://en.wikipedia.org/wiki/
Client-server, accessed on 18th June, 2009.

[22] Wikipedia. Facade pattern. http://en.wikipedia.org/wiki/

Facadepattern, accessed on 6th May, 2009.
[23] Wikipedia. Message oriented middleware. http://en.wikipedia.org/

wiki/MessageOrientedMiddleware, accessed on 6th May, 2009.
[24] Wikipedia. Multitier architecture. http://en.wikipedia.org/wiki/

Multitierarchitecture, accessed on 18th June, 2009.
[25] Wikipedia. Publish/subscribe. http://en.wikipedia.org/wiki/

Publish/subscribe, accessed on 6th May, 2009.
[26] Wikipedia. Transaction processing. http://en.wikipedia.org/wiki/

Transactionprocessing, accessed on 18th June, 2009.


