
Proceedings of the 2009 Workshop on

Complex Systems Modelling and Simulation

CoSMoS 2009

Susan Stepney, Peter H. Welch,

Paul S. Andrews, Jon Timmis,

Editors

CoSMoS 2009

Luniver Press
2009

Published by Luniver Press
Frome BA11 6TT United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

CoSMoS 2009

Copyright © Luniver Press 2009

All rights reserved. This book, or parts thereof, may not be reproduced
in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system,
without permission in writing from the copyright holder.

ISBN-10: 1-905986-22-X
ISBN-13: 978-1-905986-22-4

While every attempt is made to ensure that the information in this
publication is correct, no liability can be accepted by the authors or
publishers for loss, damage or injury caused by any errors in, or omission
from, the information given.

v

Preface

Building on the success of the first CoSMoS workshop, we are pleased
to be running the second CoSMoS workshop in association with the 8th
International Conference on Artificial Immune Systems (ICARIS), in
York, UK. The immune system exemplifies a complex system — immune
regulation and protection against harmful micro-organisms emerges from
the interaction of large populations of different immune cells. Artificial
immune systems seek to understand and exploit the properties of the
real immune system. As such, the modelling and simulation of complex
systems fits well within the scope of the ICARIS series of conferences.

The genesis of the CoSMoS workshop is the similarly-named CoSMoS
research project1, a four year EPSRC funded research project at the
Universities of York and Kent. The project aims are stated as:

The project will build capacity in generic modelling tools and
simulation techniques for complex systems, to support the mod-
elling, analysis and prediction of complex systems, and to help
design and validate complex systems. Drawing on our state-of-
the-art expertise in many aspects of computer systems engineer-
ing, we will develop CoSMoS, a modelling and simulation process
and infrastructure specifically designed to allow complex systems
to be explored, analysed, and designed within a uniform frame-
work.

As part of the project, we are running annual workshops, to disseminate
best practice in Complex Systems modelling and simulation. To allow
authors the space to describe their systems in depth we put no stringent
page limit on the submissions.

We are delighted this year to welcome the world renowned immunol-
ogist Irun Cohen from the Weizmann Institute of Science, Israel as our
keynote speaker. In recent years Cohen has worked closely with David
Harel, a computer scientist also at the Weizmann Institute of Science.
Together they have led the way in developing predictive models and
simulations of real complex systems, notably the immune system. In the
first paper presented here, Cohen and Harel reflect on their experiences
of coming from very difference disciplines to work together in an truly
inter-disciplinary setting.

Continuing the immune system theme, Read, Timmis, Andrews and
Kumar present a model of the autoimmune disease Experimental Au-
toimmune Encephalomyelitis in mice. The model is the first step in pro-
ducing a predictive simulation of the disease to provide insight into the
1 The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,

http://www.cosmos-reseach.org

vi

real system. Tools from the unified modelling language are used to ex-
press the model, which provides insight into UML’s expressive capabili-
ties when applied to complex system modelling.

Hone examines the issue of using numerical integration methods to
analyse mathematical models formulated in terms of differential equa-
tions, focussing on a number of non-standard discretisation methods that
have the potential to be extremely useful in modelling biological systems.

Hoverd and Stepney consider the design of complex systems and the
role played by the environment in the interactions of complex systems
agents. They present an abstract software architecture for environment-
oriented complex system simulations, providing examples of how this
could be implemented.

Nash and Kalvala focus on the use of process calculi and the well
studied aggregation behaviour of the Dictyostelium discoideum amoeba,
showing how the π-Calculus can be used to model various aspects of
the aggregation behaviour such as cell locality and intra-cellular signal
transduction.

Finally, Ghetiu, Alexander, Andrews, Polack and Bown examine the
issue of applying argumentation techniques used for safety critical sys-
tems to complex system. The work presented here shows how these tech-
niques can be used to argue that two different implementations of a
complex system simulation are adequately equivalent.

Our thanks go to Irun Cohen for presenting his keynote and to all
the contributors for their hard work in getting these papers prepared and
revised. We thank the programme committee for their prompt, extensive
and in-depth reviews of all the papers submitted. We would also like
to thank Bob French and Mandy Kenyon from the Research Support
Office in the Department of Computer Science, University of York for
their invaluable assistance behind the scenes. We hope that readers will
enjoy this set of papers, and come away with insight on the state of the
art, and some understanding of current progress in Complex Systems
Modelling and Simulation.

vii

Programme Committee

Paul Andrews, University of York, UK
Fred Barnes, University of Kent, UK
Hugues Bersini, ULB, Belgium
James Bown, University of Abertay, Dundee, UK
George Eleftherakis, CITY College, Thessaloniki, Greece
Simon Hickinbotham, University of York, UK
Tim Hoverd, University of York, UK
Adam Nellis, University of York, UK
Nick Owens, University of York, UK
Fiona Polack, University of York, UK
Simon Poulding, University of York, UK
Adam Sampson, University of Kent, UK
Susan Stepney, University of York, UK
Jonathan Timmis, University of York, UK
Peter Welch, University of Kent, UK
Alan Winfield, University of the West of England, Bristol, UK
Alan Wood, University of York, UK

viii

Table of Contents

CoSMoS 2009

Two Views of a Biology-Computer Science Alliance 1
Irun Cohen, David Harel

A Domain Model of Experimental Autoimmune Encephalomyelitis 9
Mark Read, Jon Timmis, Paul S. Andrews, Vipin Kumar

On Non-Standard Numerical Integration Methods for Biological
Oscillators . 45
Andrew Hone

Environment Orientation: An Architecture for Simulating
Complex Systems . 67
Tim Hoverd, Susan Stepney

A Framework Proposition for Cellular Locality of Dictyostelium
Modelled in π-Calculus . 83
Anthony Nash, Sara Kalvala

Equivalence Arguments for Complex Systems Simulations – A
Case-Study . 101
Teodor Ghetiu, Robert D. Alexander, Paul S. Andrews, Fiona
A. C. Polack, James Bown

x

Two Views of a Biology-Computer

Science Alliance ?

Irun Cohen1 and David Harel2

1 Department of Immunology
The Weizmann Institute of Science, Israel

irun.cohen@weizmann.ac.il
2 Department of Computer Science and Applied Mathematics

The Weizmann Institute of Science, Israel
dharel@weizmann.ac.il

Abstract. The editors of these CoSMoS Workshop Proceed-
ings have invited us to describe the two sides of our joint ap-
proach to computer simulation of biological systems: the biolog-
ical side and the computer science side. Irun Cohen, an immu-
nologist, will voice the biological side; David Harel, a computer
scientist, will voice the computer science side.

1 Cohen

I was led to David Harel and to the tools and thinking of computer
science by a combination of factors emerging from my research into au-
toimmune diseases and the regulation of the immune system. Some of
these factors are common to biology research generally and some are
linked specifically to immunology and to my particular way of thinking.
I shall list the factors that appear to have been the most influential for
me, beginning with the general and proceeding to the particular.

1.1 The mass of experimental information staggers the
imagination.

A biologist who zooms out for a comprehensive view of his or her field of
study is frustrated; the mass of data defies memory and intuitive under-
standing. It appeared clear to me that only a computer could remember
all the details and might help the biologist sort them out.
? Part of this work was supported by The John von Neumann Minerva Cen-

ter for the Development of Reactive Systems at the Weizmann Institute
of Science and by an Advanced Research Grant from the European Re-
search Council (ERC) under the European Community’s 7th Framework
Programme.

2 Cohen and Harel

1.2 Pleiotropism and redundancy thwart understanding.

Human understanding is most comfortable with one-to-one, linear caus-
ality; for example, intuition early on posited that each DNA gene se-
quence is expressed through one messenger RNA and translated into
one protein with a single function. Now we have learned about DNA
methylation and other epigenetic control mechanisms; alternative splic-
ing; post-transcriptional and post-translational modifications; single pro-
teins with five or ten different functions. In my own field, we see that a
single cytokine can make some cells die, some cells live and grow, some
cells differentiate – depending on the type and states of the cells. Redun-
dancy and pleiotropism – multi-functionality – are the norm [5]. Most
human minds find it difficult to keep track of pleiotropic and redun-
dant systems; our thinking favors simple engineering diagrams. We need
the help of systems and design experts to handle all the redundant and
multi-functional details of living organisms.

1.3 Experimental analysis is static; living systems are
dynamic.

Living systems are dynamic at every level – molecules, cells, organisms,
populations; continuous interaction is the essence of biology. Yet, the ex-
perimental method almost always involves a controlled but static analysis
of the defining dynamics. If we want to see how living systems work, we
must go beyond analysis and study running simulations that can inte-
grate the piecemeal experimental data to recreate a working, dynamic
whole.

1.4 We will not be able to reduce living systems to
fundamental laws of nature; biology is not like physics.

The paradigm established by physics asserts that truly scientific under-
standing is founded on simple underlying laws, preferably quantitative,
that account for the manifest complexity of the real world. Science, so
viewed, is the quest for fundamental laws of nature. The laws of nature
endure; such laws define being. The transient, mortal details of life are
trivial accidents. Physics is interested in being; physics would see no
fundamental difference between C. elegans and H. sapiens; in essence,
they both operate according to the same chemical reactions and cellular
networks, albeit to different degrees of complexity. Biology, in contrast
to physics, strives to understand the impermanent differences between
C. elegans and H. sapiens; the differences are based on cursory details;
the differences are not being, but becoming. Biology cannot reduce the

Two Views of a Biology-Computer Science Alliance 3

messy details of the living organism to explanatory, fundamental laws
of nature; biology is defined by attending to the fleeting details. Biology
is interested in the reactive designs of life. Biologists, like me, need the
help of computer scientists and their computers to record, characterize,
and catalog the complex details of living systems, and to render them
quantitative and dynamic. Computer scientists know about design prin-
ciples. Indeed, the only principle of biology that approaches the status
of a law is the notion of evolution through genetic variation and survival
of the fittest – evolution is a design for becoming, not a law of being.

1.5 Mathematical analysis has been incomplete.

Biologists have collaborated with mathematicians to clarify biologic com-
plexity by reducing it to relatively simple abstract relationships that can
be analyzed by differential equations and other mathematical tools. My
formative experience with mathematical theoreticians has been fruit-
ful [1, 7, 11, 21–24] and has prepared me for later work with Harel and
computer science. But these forays into theory could not take into ac-
count the rich details of the actual biology behind the phenomena that
were modeled mathematically. The math misses the ontogeny.

1.6 The immune system is cognitive and computes the state
of the body.

The prevailing view has been that the immune system has only one par-
ticular bias: it must not respond to self-molecules; the functional immune
repertoire is selected by the foreign antigens that happen to enter the
body. In contrast, my experimental investigations of autoimmunity and
autoimmune diseases led me to conclude the immune system is cognitive
– it has a built-in representation of particular self-molecules and molecu-
lar contexts that guides its response decisions both to self and to foreign;
the immune system, as it where, knows what it is looking for [2, 3, 8].

The immune system, moreover, is engaged in an ongoing computa-
tion of the state of the body: Its receptors gather information about
the body (injury, infection, the need to grow blood vessels or destroy
them, the need to stimulate cells or kill them, the need to heal wounds,
etc) and tranduces this input information into an output of regulated
inflammation that feeds back to modify the body and the immune sys-
tem itself [4–6]. The details are beyond the scope of this chapter. The
point here is that my appreciation of the internal structure, the cognitive
behavior and computational function of the immune system led me to
see what David Harel and computer science might have to offer.

4 Cohen and Harel

2 Harel

2.1 Origins

I had been working since the early 1980’s on the problem of specifying
the behavior of complex reactive systems [18]. This started via a one-day-
per-week consultation job at the Israel Aircraft Industries (IAI), working
with the avionics team of a fighter aircraft project. During that period,
I proposed a visual formalism [13] — a rigorous diagrammatic language
— for specifying reactive behavior, which I called statecharts [12]. This
language has been around now for exactly 25 years and is considered a
useful way of specifying behavior of such complicated systems [17]. It
is in broad use in many industries, from cellular telephones to aircraft,
automobiles, interactive software systems, and the like.

During that period the two main issues I was obsessed with were
specifying the system’s behavior in ways that would be intuitive and
natural, but, at the very same time, formal and executable. We want a
medium with which it is easy to specify and model and which is easy to
understand, but, on the other hand, it must also have rigorous mathe-
matical underpinnings, detailed and precise enough so that the system’s
full behavior can be executed (simulated) and analyzed by computer.
The language of statecharts is a modest attempt to approach these two
goals, in that it is highly diagrammatic, and seems to fit the way people
think about behavior, yet it is as rigorous as any mathematical equation
or computer program.

2.2 Biology and computer science

In the late 1980’s it occurred to me that such problems of specifying be-
havior are not only common and problematic in human-made systems,
such as the ones mentioned above, but might also be problematic in
modeling Nature — in particular, biological systems. It seemed that the
notion of a reactive system and the great difficulties that lie in design-
ing them, are common to biological systems too. Perhaps the methods
and languages used to design human-made ones could be used to help
understand biology by “reverse engineering” it. However, having almost
no experience in biology I wasn’t able to take this much further on my
own. And then, as Irun Cohen wrote in his portion of this paper, we
happened upon each other, which led us to carry out an initial modest
project with Na’aman Kam, a joint student who indeed started to use
statecharts to specify biological phenomena [19].

The current paper will not be discussing the details of the work that
we have done together in the last decade or so (see, e.g., [9, 10, 25, 26],

Two Views of a Biology-Computer Science Alliance 5

but, in retrospect, I would submit that modeling, specifying and ana-
lyzing biology is one of the most exciting imaginable uses of computer
science. This includes a lot of work by systems biologists, by bioinfor-
matics researchers, but also by people like us who are doing something
that is not exactly bioinformatics and is not exactly systems biology ei-
ther. Rather, it is an attempt to mimic and imitate biology using means
taken from software engineering and computer science, in an attempt
to understand an entire system in a broad way [15, 16]. Many people,
including myself, believe that computer science — as opposed to com-
puter software or computation per se — will play a role in the science of
the 21st century (which will no doubt be dominated by the life sciences)
similar to the role played in the science of the 20th century (which was
dominated by the physical sciences).

2.3 On aircraft and elephants

If we were to take as a typical example of a complex human-made system
an F-16 or F-35, we might want to take as an example a complex biolog-
ical system a multi-cellular organism, such as an elephant, or a lizard, or
a fly, or a worm. The former has to be specified, designed, built, tested,
debugged, maintained, and so on, and the latter has to be understood,
which is by no means a small feat! In fact, the work that Irun and I
have been doing with a cadre of extremely talented students raises the
possibility of carrying out a whole organism project (WOP), the main
goal of which would be to model an entire multi-cellular organism [14].
The organism would be modeled up to a certain pre-agreed-upon level
of detail, and we want a model that would be fully and interactively
executable. We would be reverse engineering an elephant, so to speak,
rather than engineering an F-35. . .

The benefits of a successful WOP are almost unimaginable. Imagine
us being able to actually simulate an elephant, in its entirety, have it
develop from a fetus, have it walk and eat and play, and produce off-
spring.Moreover, and perhaps most importantly, during all of that the
user of the model can intervene, by anything from switching off a gene,
to treading on the elephant’s foot and seeing what happens. If we could
do that, especially if the model would reach down into the cellular and
sub-cellular levels, there’s almost no limit to the kinds of things we might
be able to discover.

My claim is that although such a WOP is an almost unimaginably
complicated task, even for a small organism, and one would need some-
thing like 15-20 years to approach it, it is possible. An elephant is ob-
viously not a particularly good idea, but something smaller and more
manageable is, such as the C. elegans nematode, which has a little over

6 Cohen and Harel

1000 cells, all easily traceable in the lab. This is a multi-cellular organ-
ism of sufficient complexity to teach us an enormous amount about life,
sickness and death, and the processes leading to them, but it is also of
sufficiently modest proportions so as to be imaginable in a long, but
reasonable, time frame [14, 16].

2.4 Visuality and formality

It is worth re-emphasizing that the recommendation is that modeling bi-
ology would have to be done using approaches that are intuitive enough
so that biologists, who are not trained as mathematicians or as com-
puter scientists, would be able to do much of the modeling themselves.
My feeling is that the education that biologists will be getting in the next
10-15 years will bring them closer to the ability to master techniques for
the modeling and analysis of complex systems, just as the education
physicists got many tens of years ago, became a lot more mathemati-
cal, enabling them master and use mathematical techniques to model
and analyze physical phenomena. Of course, as mentioned earlier, the
languages and approaches used should be intuitive, but formal, so they
their attractiveness to the biological community notwithstanding, they
would be rigorous enough to be fully executed.

These days, biologists use many kinds of diagrams to describe path-
ways and networks, and the interdependency of genes and other intra-
cellular entities. Many of these diagrams are informative and clear, but
for the most part they are not sufficiently formal. Most of the approaches
that advocate such diagrams do not give rise to full execution. First of
all, this is due to lack of sufficiently detailed biological data and param-
eters; but more importantly, it is because the semantics of the diagrams
themselves does not lend itself to full executability; see [20]. In contrast,
the approaches we have been using (for example, statecharts-based mod-
eling) are such that once you have your model intact, it can be run, or
executed just like any other computer program.

2.5 One more word on the collaboration

From my personal point of view, the collaboration with Irun, which
started in the late 1990’s, has been one of the most productive and
exciting periods of my scientific life. I hope that we will continue to
work for many years and that our work will be at least as exciting as it
has already been. Perhaps we will indeed be able to contribute a little
to the feeling that the marriage between computer science and the life
sciences is already, but will become even more so, one of the most fruitful
marriages in modern science.

Two Views of a Biology-Computer Science Alliance 7

3 Two Views but One Product

Our two views of this biology-computer science alliance, as you can see
here, reflect two different vantage points. Each of us entered the collabo-
ration motivated by different personal and professional histories, arising
from our different trainings, experiences and mindsets. Our colleagues,
nevertheless, need see only one product of interest to science — the work
itself, which is the unity of our joint thinking and our joint efforts. The
meaning of this unified opus will, in turn, diverge into the different ideas
and experiments that we hope our work will trigger in our fellow sci-
entists. Such is the evolution of science: diverse views generate a new
viewpoint that generates new diverse views.

References

[1] H. Atlan and I.R. Cohen. Immune information, self-organization and
meaning. Int. Immunol., 10(6):711–717, 1998.

[2] I.R. Cohen. The cognitive paradigm and the immunological homunculus.
Immunol, Today, 13(12):490–494, 1992.

[3] I.R. Cohen. The cognitive principle challenges clonal selection. Immunol.
Today, 13(11):441–444, 1992.

[4] I.R. Cohen. Discrimination and dialogue in the immune system. Semin.
Immunol., 12(3):215–9; 321–323, 2000.

[5] I.R. Cohen. Tending Adam’s Garden: Evolving the Cognitive Immune
Self. Academic Press, London, UK, 2000.

[6] I.R. Cohen. Immune system computation and the immunological ho-
munculus. In MoDELS 2006, pages 499–512. Springer-Verlag, Berlin,
2006.

[7] I.R. Cohen, U. Hershberg, and S. Solomon. Antigen-receptor degeneracy
and immunological paradigms. Mol. Immunol., 40(14-15):993–996, 2004.

[8] I.R. Cohen and D.B. Young. Autoimmunity, microbial immunity and the
immunological homunculus. Immunol. Today, 12(4):105–110, 1991.

[9] S. Efroni, D. Harel, and I.R. Cohen. Towards rigorous comprehension of
biological complexity: Modeling, execution and visualization of thymic t
cell maturation. Genome Research, 13:2485–2497, 2003.

[10] S. Efroni, D. Harel, and I.R. Cohen. Emergent dynamics of thymocyte
development and lineage determination. PLOS Computational Biology,
3(1):127–136, 2007.

[11] Z. Grossman and I.R. Cohen. A theoretical analysis of the phenotypic
expression of immune response genes. Eur. J. Immunol, 10(8):633–640,
1980.

[12] D. Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Programming, 8:231–274, 1987.

[13] D. Harel. On visual formalisms. Comm. Assoc. Comput. Mach.,
31(5):231–274, 1988.

8 Cohen and Harel

[14] D. Harel. A grand challenge for computing: Full reactive modeling of a
multi-cellular animal. Bulletin of the EATCS (European Association for
Theoretical Computer Science), 81:226–235, 2003.

[15] D. Harel. On comprehensive and realistic modeling: Some ruminations
on the what, the how and the why. Clinical and Investigative Medicine,
28(6):334–337, 2005.

[16] D. Harel. A turing-like test for biological modeling. Nature Biotechnology,
25:495–496, 2005.

[17] D. Harel. Statecharts in the making: A personal account. Comm. Assoc.
Comput. Mach., 52(3):67–75, 2009.

[18] D. Harel and A. Pnueli. On the development of reactive systems. In Logics
and Models of Concurrent Systems (NATO ASI Series, Vol. F-13), pages
477–498. Springer-Verlag, 1985.

[19] N. Kam, I.R. Cohen, and D. Harel. The immune system as a reactive
system: Modeling t cell activation with statecharts. In Proc. Visual Lan-
guages and Formal Methods (VLFM’01), pages 15–22, 2001.

[20] H. Kugler, A. Larjo, and D. Harel. Biocharts: A visual formalism for
complex biological systems. to appear.

[21] Y. Louzoun, H. Atlan, and I.R. Cohen. Modeling the influence of th1-
and th2-type cells in autoimmune diseases. J. Autoimmun., 17(4):311–
321, 2001.

[22] Y. Louzoun, S. Solomon, H. Atlan, and I.R. Cohen. Modeling complexity
in biology. Physica A, 297:242–252, 2001.

[23] Y. Louzoun, S. Solomon, H. Atlan, and I.R. Cohen. Proliferation and
competition in discrete biological systems. Bull. Math. Biol., 65(3):375–
396, 2003.

[24] L.A. Segel, E. Jager, D. Elias, and I.R. Cohen. A quantitative model of
autoimmune disease and t-cell vaccination: does more mean less? Im-
munol. Today, 16(2):80–84, 1995.

[25] Y. Setty, I. R. Cohen, Y. Dor, and D. Harel. Four-dimensional realistic
modeling of pancreatic organogenesis. Proc. Natl. Acad. Sci., 105(51),
2008.

[26] N. Swerdlin, I. R. Cohen, and D. Harel. The lymph node b cell immune
response: Dynamic analysis in-silico. Proceedings of the IEEE (special
issue on Computational System Biology), 96(8):1421–1443, 2008.

A Domain Model of Experimental

Autoimmune Encephalomyelitis

Mark Read1, Jon Timmis1,2, Paul S. Andrews1, and
Vipin Kumar3

1 Department of Computer Science, University of York, UK.
{markread,jtimmis,psa}@cs.york.ac.uk

2 Department of Electronics, University of York, UK.
3 Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies,

CA, USA.

Abstract. Experimentation with simulations of complex sys-
tems can be used to gain insights into those systems’ nature
and operation. Such in silico experimentation represents a valu-
able tool that can complement conventional in vivo experimenta-
tion. Validation of a simulation’s representation of the real world
system remains an open question in complex systems research.
As the engineer of a complex system simulation, demonstrating
one’s understanding of the complex system through the creation
of models which can be validated by a domain expert affords
some degree of confidence that the results obtained through in
silico experimentation are representative of the real world sys-
tem. As a precursor to the creation of simulations of experi-
mental autoimmune encephalomyelitis, a complex autoimmune
disease in mice, we present here a model of the disease. The
models are expressed using UML, and their construction has af-
forded insight into UML’s expressive capabilities when applied
to complex system modelling.

1 Introduction

Experimental Autoimmune Encephalomyelitis (EAE) [14, 15] is an au-
toimmune disease in mice that serves as a model for multiple sclerosis in
humans. The disease, and its subsequent spontaneous recovery, is com-
plex. A large number of immune system cells interact with one another
across several bodily compartments to mediate both EAE autoimmunity
and its recovery. As is the case with many complex systems EAE is diffi-
cult to understand through a reductionist scientific approach alone. The
construction of models and simulations of the disease can afford insights
into the disease’s behaviour and can guide wet-lab experimentation to

10 Read, Timmis, Andrews and Kumar

points of interest. Experiments that would be difficult to engineer in vivo
can be engineered into a simulation with relative ease. Simulations per-
mit the investigation of hypotheses concerning the disease’s operation
within the context of known biological data.

A major concern for in silico experimentation using a simulation
is the simulation’s validity. It is important that one can demonstrate
that the results obtained through experimentation with a simulation are
representative of the in vivo system. How to demonstrate the validity
of a simulation remains an open question in complex systems research.
The CoSMoS project4 [1] purposes to develop general principles for the
creation and validation of models and simulations of complex systems
[2]. The project is developing “the CoSMoS process”, an approach to
the engineering of complex systems that proposes the construction of
models of the complex system as a prerequisite to the construction of
any simulations of it.

It is critical that the developers of a complex system simulation pos-
sess a decent5 understanding of how the system works. By developing
models of the complex system this understanding can be demonstrated,
and can be validated by a domain expert. The construction of such mod-
els frequently necessitates examination of the complex system from an-
gles that might not otherwise be considered, and can raise further ques-
tions of its operation. The models themselves can form a specification
for the construction of a complex system simulation. Validation of a
simulation’s specification (models) by a domain expert can go some way
towards instilling confidence that the simulation is representative of the
real world system.

The unified modelling language (UML) is a collection of diagram-
matic tools that are were designed for the purpose of specifying software
systems. It has been suggested that UML holds potential for modelling
biological systems [6]. In this paper we present a model of EAE expressed
using UML. By employing UML in this fashion we have identified several
strengths and weaknesses of the language when expressing complex bio-
logical systems, some of which are outlined in [19]. We find that although
UML incorporates several mechanisms that are useful in expressing EAE,
such as activity diagrams and state machine diagrams, there are aspects
of the biological system that UML cannot satisfactorily communicate.
For example, feedback mechanisms that manifest through populations

4 The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,
http://www.cosmos-reseach.org.

5 A “complete” or “detailed” understanding is not always possible, since at-
tempting to resolve uncertainty concerning the system’s nature is one mo-
tivation for developing the simulation in the first place.

A Domain Model of EAE 11

of cells that amplify and counteract each other’s operation. Through
constructing the present domain model of EAE we have identified some
general principles and approaches for applying UML to modelling com-
plex systems. The models we present here serve as an example of how
to create a domain model of a complex biological system.

Section 2 details the CoSMoS approach to developing models and
simulations of complex systems. Section 3 provides a detailed account
of EAE and its recovery. Section 4 introduces UML. In Section 5 we
present the model of EAE, highlighting the assumptions we have made
in its creation, and how UML has been employed in the generation of
the models. Section 6 concludes the paper.

2 CoSMoS Process and the Domain Model

The CoSMoS project is concerned with the development of a modelling
and simulation infrastructure that facilitates the design and analysis of
complex systems [3]. Ongoing work within CoSMoS seeks to develop
a “minimal process” for the development of models and simulations of
complex systems. The creation of accurate models and simulations is
non-trivial, and demonstrating that they are representative of the real
complex systems that they attempt to capture is critical to their use in
research. The minimal process represents a first step towards building
validated models of complex systems.

Figure 1 shows the minimal process as it currently stands. The do-
main represents the real-world system of interest, in this case EAE. The
models and simulations constructed attempt to capture behaviours and
properties exhibited by this real world system.

The domain model details the current understanding of the biological
domain as held by the modeller. It captures the behaviours present in
the biological domain that the modelling and simulation process hopes
to investigate. A domain model may span multiple levels of abstraction,
from the high level depiction of perceived emergent behaviours exhib-
ited at a system-wide level, to the low-level entities of the system and
how they interact with one another. The model should be free from any
implementation-specific bias. Validation of the domain model is impor-
tant, and is carried out by a domain expert. If the domain model is
invalid, then the understanding that the modeller has of the system is
most likely incorrect, and any simulation built upon that understanding
is unlikely to be representative of the real biological domain.

The software model is constructed from the concepts captured in the
domain model. It is tailored toward the design and implementation of the

12 Read, Timmis, Andrews and Kumar

Fig. 1. The CoSMoS minimal process for the development of complex systems
simulations [4].

simulator itself; explicit notions of emergent properties and behaviours
are removed, and implementation specific concepts may be introduced.

The simulation model is derived through observations of and experi-
mentation with the simulation. The simulation model is to the simulation
what the domain model is the domain. Validation can be performed be-
tween the domain model and the simulation model; if the simulation
correctly captures the desired behaviours present in the domain, then
the simulation model should closely resemble the domain model.

The nature of complex systems research dictates that there will ex-
ist unknown aspects of the system that no domain expert can be sure
of. One of the motivations in creating models and simulations of the
system is to bring these areas to light, but where no certain answer
currently exists an assumption must be made. Likewise, it is infeasible
to model and hence reason about every aspect of a complex system sys-
tem; abstracting away from complexity believed not to be integral to the
system’s behavioural dynamics is essential. Whenever an abstraction is
made to simplify the system there entails an implicit assumption that the
abstraction will not compromise the simulation/model’s capture of the
behaviours present in the real-world system. These assumptions should
be recorded and validated by the domain expert as being appropriate
and sensible. If the simulation fails to properly capture the behaviours
of interest, then it is likely that an assumption was inappropriate, and
it should be readdressed. Thus, the minimal process is iterative.

It is important to recognise and document the questions and issues
that one hopes to address through modelling and simulating a complex
system. The nature of the assumptions and abstractions that are made
in constructing models and simulations of a complex system are moti-

A Domain Model of EAE 13

vated by what those models and simulations are to be used for. The
assumptions and abstractions must be appropriate for the problem at
hand.

In the event that a simulation fails to capture a complex system’s
emergent properties, yet all abstractions and transitions between the
minimal process’s models were deemed just and appropriate by a do-
main expert, then it may hold that some higher level hypothesis upon
which the simulation was built is incorrect. It is essential that the sim-
ulation’s world be properly delineated. There exists a huge variety of
interacting elements in a biological system, and accurately simulating
all of them is impractical. At its highest level the domain model assumes
a hypothesis over which elements in the complex system are responsible
for the manifestation of some target abstract behaviour, and thus which
elements it will represent. It is plausible that this hypothesis itself will
prove to be incorrect, hence the importance of documenting it.

3 Experimental Autoimmune Encephalomyelitis

In this section we provide a detailed description of experimental autoim-
mune encephalomyelitis and its subsequent recovery. The information
provided here provides the basis for the domain model that follows.

3.1 Autoimmunity

Experimental autoimmune encephalomyelitis (EAE) is an autoimmune
disease in mice that serves as a model for multiple sclerosis in hu-
mans [14, 15]. The disease constitutes the body’s immune system attack-
ing myelin, an insulator material that covers the neurons of the central
nervous system (CNS) and is essential to their function. Damage to the
CNS through demyelination can lead to paralysis and death [16].

Figure 2 presents an informal depiction of how EAE is induced thr-
ough immunisation with MBP, a myelin derivative. The immunisation
is accompanied by complete Freund’s adjuvant (CFA) and pertussis
toxin, both immunopotentiators which stimulate the immune system.
The immunisation occurs subcutaneously. The phagocytosis of MBP
by dendritic cells (DCs) resident in the periphery leads to its presen-
tation as MHC-I-MBP and MHC-II-MBP molecules on the DCs. The
CFA and pertussis toxin stimulate the DCs, and they up-regulate co-
stimulatory molecule expression and migrate to the secondary lymphoid
organs. There populations of naive autoimmune MBP-reactive CD4Th1
and CD4Th2 cells bind with MHC-I-MBP as expressed on the immi-
grant DCs and derive signal 1. The high level of co-stimulatory molecule

14 Read, Timmis, Andrews and Kumar

Fig. 2. An informal depiction of how EAE is induced.

expression by these DCs delivers signal 2 to the CD4Th1 and CD4Th2
cells resulting in their activation. MHC-I-MBP molecules, as expressed
by these same DCs, are bound by MBP reactive CD8 cytotoxic T (Tc)
cells. With help of the MBP-reactive CD4Th1 cells these Tc cells become
fully activated.

The now activated CD4Th1, CD4Th2, and CD8Tc cells migrate
to the CNS compartment. The CD4Th1 and CD8Tc cells secrete pro-
inflammatory type 1 cytokines such as IL-2, INF-γ, and TNF-β [13].
These cytokines represent an inflammatory context to resident antigen
presenting cells (APCs) such as macrophages and microglia which be-
come stimulated. When stimulated these CNS APCs secrete TNF-α,
reactive oxygen species (ROS), and nitric oxide (NO), all of which are
toxic to neurons in high doses [11, 18, 22]. Neurons contain MBP, and
those that are killed in this manner are subsequently phagocytosed by
CNS APCs, which then express MHC-I-MBP and MHC-II-MBP. The
inflammatory conditions in the CNS prompt these APCs to upregulate
co-stimulatory molecules, and hence induce the full activation of naive
CD4Th1, CD4Th2, and CD8Tc cells that result from proliferation in the
CNS.

The CD4Th2 cells secrete type 2 cytokines such as IL-4, IL-5, and
IL-10. Type 1 cytokines suppress Th2 cell activity, and type 2 cytokines
suppress that of Th1 cells, reducing the cells’ proliferative and differenti-
ation capabilities [13]. During the course of EAE autoimmunity the Th1
cell population is dominant, they have a higher affinity for MHC-I-MBP
(bindings are stronger and last longer, resulting in less failings to receive
signal 1 before the bindings are broken) and proliferate more quickly.

A Domain Model of EAE 15

3.2 Regulation-mediated recovery

A network of immune cell interactions can mediate recovery from EAE,
and is depicted (at an abstract level) in Figure 3. The physiological
turnover of CD4Th1 cells results in their apoptotic death, and subse-
quent phagocytosis by APCs (such as the dendritic cell) in the CNS
draining lymph nodes. Two regions of the T cell receptor (TCR) of
MBP-reactive CD4Th1 cells form peptides that are presented on MHC
molecules by the APC to prime two populations of regulatory T cell
(Treg). These two regions are complementarity determining region 1/2
(CDR1/2) and Fr3, which are presented on non-classical MHC-I (Qa-
1) and MHC-II respectively. Binding of MHC-II-Fr3 by Fr3-reactive
CD4Treg cells leads to their receipt of signal 1. Molecules generated by
the inflammation in the CNS drain into the draining lymph nodes and
stimulate the APCs that reside there to upregulate their expression of
co-stimulatory molecules. This upregulated expression of co-stimulatory
molecules delivers signal 2 to the CD4Treg cells. When activated, and
upon binding with MHC-II-Fr3, CD4Treg cells secrete INF-γ, which is
required for the processing and presentation of CDR1/2 on non-classical
MHC-I (Qa-1) molecules by the APC [23]. This phenomenon is called
“licensing” of the APC by the CD4Treg.

CD8Treg cells bind with MHC-I-CDR1/2 as expressed on APCs res-
ident in the CNS’s draining lymph nodes and derive signal 1. The high
level of co-stimulatory molecule expression on these APCs allows the
CD8Treg cells to derive signal 2, becoming fully activated. For a short
period of time, around eight hours, following their initial activation
CD4Th1 cells express MHC-I-CDR1/2. If this is bound by a fully ac-
tivated CD8Treg cell the Treg cell can induce the apoptotic death of the
CD4Th1 cell.

On a population-wide scale this rise in CD8Treg cell population num-
ber leads to a reduction of CD4Th1 number. This occurs in the circu-
latory system and lymphoid organs such as the spleen; however, Treg
cells have not been identified in the CNS, hence this regulation is not
assumed to occur there. The transient expression of MHC-I-CDR1/2 by
CD4Th1 cells renders them susceptible to regulation for only a short pe-
riod of time into their full activation. Once this period of time has passed
these cells are still susceptible to death through the Fas-FasL pathway.
Once activated T cells begin to upregulate their expression of both Fas
and FasL on their cell membranes. Sufficient bindings between these two
types of molecule can induce a cell’s death. Apoptotic death though the
Fas-FasL pathway is called activation induced cell death (AICD). The
decline in CD4Th1 population number through regulation results in a
global reduction of type 1 cytokines being produced. This reduction al-

16 Read, Timmis, Andrews and Kumar

Fig. 3. An informal depiction of all the cells involved in EAE and its
regulation-mediated recovery, and their relations to one another.

leviates the suppression of the CD4Th2 population, which then expands
and assumes dominant status. The activity of MBP-reactive CD4Th2
cells is not toxic to neurons, and their population expansion does not
result in EAE.

4 The Unified Modelling Language

The unified modelling language (UML) [17] is a collection of diagram-
matic modelling tools designed to aid the specification and construction
of software systems. The diagrammatic tools incorporated within UML
provide a wide range of specification scopes, from the relationships held
across an entire software system, to full low-level expression of a single
system entity. UML diagrams can represent both static and dynamic
views of a system. Static views depict the relationships that system enti-
ties may hold with one another, whilst dynamic views express the collab-

A Domain Model of EAE 17

orations between system entities and the changes to their internal states
(which influence their external behaviours).

This multi-viewed approach to specifying systems has made UML a
popular modelling tool, and it finds application outside of the software
domain within which it was conceived. There have been numerous at-
tempts to model biological systems using UML, for example, [2, 6, 9, 20]
[7, 12]6.

In total UML describes 13 different modelling notations [8]. In the
domain model presented here we make use of class diagrams, activity
diagrams, and state machine diagrams. An assessment of the use of var-
ious UML diagram notations in creating the present domain model is to
appear in ICARIS 2009 [19].

Class digrams depict the static relationships between entities in the
system. Relationships can be assigned a role name, and cardinalities at
both ends of the relationship indicate how many instances of each entity
may partake in a relationship at any one point in time.

Activity diagrams represent a dynamic view of a system, and indicate
an ordering of events between instances of system entities that occur
within a particular scenario. The events (called activities) depicted in
an activity diagram may be any abstract concept.

State machine diagrams are a dynamic view of individual entity types
in the system. All instances of a particular entity follow the dynamics
defined for their type. State machine diagrams describe the states that
an entity may exist in. An entity’s state determines which events and in-
teractions it is capable of partaking in. States can be mutually exclusive,
orthogonal, and hierarchical.

5 Domain Model of EAE

This section presents the domain model of EAE and its regulation. As
detailed in section 2, the abstractions and assumptions that are made
in arriving at a simulation of a complex system are heavily dependent
on the intended purposes of the simulation, and so we document these
purposes here.

The models and simulations we are constructing are for the purposes
of conducting in silico experimentation. Through construction of a sim-
ulation of EAE that intergrates known biological data about the disease
we hope to extrapolate the potential values of otherwise unknown biolog-
ical parameters. This is elaborated upon in section 5.2. Once constructed,

6 These works used state charts [10] as their modelling medium. State charts
are very similar to the state machine diagrams of UML.

18 Read, Timmis, Andrews and Kumar

it is trivial to remove or alter the nature of entities in the simulation.
By observing the altered dynamic of the system we hope to ascertain
the importance of those entities to the system’s behaviour. As an ex-
ample, we can experiment with the length of time that a recently acti-
vated CD4Th1 cell expresses MHC-I-CDR1/2 for, and observe how the
system’s behavioural dynamics are affected by this change. Such exper-
imentation is extremely challenging to engineer into an in vivo system,
yet is relatively trivial to perform through simulation. By performing in
silico experimentation we hope to highlight areas of significance within
the system that can then be used to direct wet-lab experimentation to
points of interest.

5.1 Delineating the system

As detailed in section 2, it is essential to delineate the system of inter-
est; modelling and simulating an entire biological system is intractable.
Figure 4 denotes the observable phenomena of the real-world domain.
Argument over these phenomena is deemed to be outside the scope of
this modelling work. “Autoimmunity” is an overloaded term which im-
munologists may disagree over the exact origins of; there is more than
one form of autoimmunity. This diagram delineates the system we in-
tend to model in exact terms, both the physical entities within it and the
behaviours we expect them to manifest, omitting overloaded definitions
such as “autoimmunity”. Note that Figure 4 does not conform to any
UML notation.

The diagram explicitly depicts several levels of hypothesis that the
model and simulation will incorporate. The transitions across the dotted
line depict our hypotheses concerning those abstract behaviours/events
that we believe to be responsible for the observable phenomenon. These
transitions delineate the outer bounds of our investigations; we will not
attempt to investigate whether anything other than our “expected be-
haviours” are responsible for the observable phenomenon. Our investi-
gations are scoped within the context of these expected behaviours, as
indicated on the diagram. It is these expected behaviours that we are at-
tempting to capture in our models and simulations. The transitions over
the dotted line indicate how the work carried out with our simulations
fits into the wider context of study on EAE and autoimmunity.

Further hypotheses are detailed in the links between the expected
behaviours and the real physical entities of the system. These links indi-
cate which entities in the real-world system we believe to be responsible
for manifesting the expected behaviours, and will thus find explicit rep-
resentation within our system. The “expected behaviours” are so named
because we expect these system-wide behaviours to manifest from the

A Domain Model of EAE 19

lower level entities and their interactions, as depicted on the diagram
(albeit at an abstract level).

In our case the observed phenomena are that mice experience paraly-
sis from EAE, and that the immune system is regarded as being respon-
sible for carrying out damage to the central nervous system. Mice can
recover from EAE spontaneously. Following recovery mice are typically
insusceptible to further attempts to induce EAE autoimmunity in them.

We hypothesise that “autoimmunity against the CNS” is caused by
the behaviour of immune cells harming central nervous system (CNS)
cells. This behaviour manifests through the actions of several immune
cells. Dendritic cells activate auto-reactive CD4 Th1 cells, which in turn
facilitate the activation of CD8 Tc cells, which together stimulate CNS
Macrophages into secreting molecules that are toxic to neurons (CNS
Cells). These actions are all quite abstract, and are expanded upon in
other diagrams, as discussed below.

Of note is that one of the observable phenomena is not linked to an
expected behaviour. We are unsure as to what is responsible for “protec-
tion against subsequent attempts to induce autoimmunity against CNS”.
Two possibilities include the establishment of an equilibrium between
the rise of CD4Th1 cells and their apoptotic death through regulation,
or the action of memory Treg cells that efficiently subvert the onset of
autoimmunity before significant damage is caused.

Figure 4 is an alternative to another technique of expressing the ex-
pected behaviours or emergent properties of a system; Garnett et al. [9]
have represented the emergent property that their simulations attempted
to capture as a first class entity on a class diagram. We have found this
technique unsuitable for EAE; a class labelled “autoimmunity” or “reg-
ulation” cannot be instantiated in the same manner that class labelled
“dendritic cell” can be, yet their representation as such would imply
same semantic behaviour. Instead, through Figure 4, we have captured
the system-wide behaviours of autoimmunity and regulation as unique
abstract entities and linked them to the physical components in the sys-
tem responsible for their manifestation.

5.2 Validating models and simulations

A central issue for validation of a simulation of a complex system, and re-
sults obtained thereof, is identifying how well it captures the behaviours
exhibited by the real world system. In the case of EAE there is no avail-
able metric to measure how well “autoimmunity” has been captured. In
vivo experimentation defines a scale based upon the degree of paraly-
sis experienced by a subject. Since modelling and simulating the entire
mouse is unmanageable, a parallel of this metric for the simulation is not

20 Read, Timmis, Andrews and Kumar

possible. It is unknown how much “damage” to a central nervous system
in terms of neuron death corresponds to a particular degree of paralysis,
so although neurons can find explicit representation within a simulation
the extent to which they are attacked by the immune system cannot be
used as a metric either.

Through interaction with a domain expert a timeline of significant
events that can be observed within the in vivo system can be devised. In
the case of EAE these events are depicted in Table 1. They correspond
with observations made at the cell population level. This timeline can
potentially be used to validate a simulation’s capture of EAE; if the
population dynamics within the simulation match those of the timeline,
and if the the behaviours of entities represented within the simulation
are validated by the domain expert, then some level of confidence that
the simulation is representative of EAE can be obtained.

The nature of current immunological research dictates that not all
biological parameters are known, and some will be subject to controversy
within the field. This is the case with EAE, and presents a problem for
any simulation that attempts to capture it. The present domain model
details which biological parameters are and are not known; see Table 2.
Those that are known can be incorporated into a simulation, whilst those
that are not will be subject to experimentation. Given the timeline of in
vivo EAE, and that the behavioural dynamics of the cells that mediate
it are validated by a domain expert, correct values for the unknown
biological parameters should recreate the timeline within the simulation.
This hinders on the assumptions that have been made in arriving at the
simulation being appropriate and valid, as indicated by a domain expert.
Documenting these assumptions is critical for determining the validation
of models and simulations. Appendix A captures the assumptions made
in the present domain model.

A Domain Model of EAE 21

F
ig

.
4
.

T
h
is

d
ia

g
ra

m
d
et

a
il
s:

th
e

o
b
se

rv
a
b
le

p
h
en

o
m

en
o
n

o
f

th
e

b
io

lo
g
ic

a
l

d
o
m

a
in

;
th

e
b

eh
av

io
u
rs

th
a
t

w
e

h
y
p

o
th

es
is

e
to

b
e

re
sp

o
n
si

b
le

fo
r

th
o
se

p
h
en

o
m

en
o
n
;

a
n
d
,

a
t

a
n

a
b
st

ra
ct

le
v
el

,
w

h
ic

h
p
h
y
si

ca
l

en
ti

ti
es

o
f

th
e

re
a
l-

w
o
rl

d
b
io

lo
g
ic

a
l

d
o
m

a
in

w
e

b
el

ie
v
e

to
b

e
re

sp
o
n
si

b
le

fo
r

m
a
n
if

es
ti

n
g

th
o
se

b
eh

av
io

u
rs

.
N

o
te

th
a
t

th
er

e
a
re

n
o
t

fo
rm

a
l

se
m

a
n
ti

cs
a
tt

a
ch

ed
to

th
is

d
ia

g
ra

m
.

22 Read, Timmis, Andrews and Kumar

Time Event

0 days Immunisation with MBP, CFA, and pertussis toxin
in the periphery

3-5 days Detectable proliferation of CD4Th1, CD4Th2, and CD8Tc
cells in the secondary lymphoid organs

5-7 days Detectable proliferation of CD4Th1, CD4Th2, and CD8Tc
cells in the CNS

10-15 days Visible paralysis of mouse
10 days Detectable proliferation of CD4Treg and CD8Treg cells

in secondary lymphoid organs
30-40 Recovery from EAE.

Table 1. The key population level events in EAE and its regulation-mediated
recovery.

Event Time

Delay in phagocytosis of substance to its
appearance on MHC 1-2days
Delay in upregulation of co-stimulatory
molecules following stimulation of APC ∼2 hours
Persistence of Qa-1-CDR1/2 on CD4Th1 cell
following activation ∼8 hours
CD4Th2 cell dies from AICD after initial
activation after ∼8 days
Stimulated, activated CD4Th2 cell
proliferates every ∼3 days
Other T cells die from AICD after
initial activation after ∼5 days
Other activated T cells, given sufficient
stimulation, proliferate every ∼2 days

Persistence of MHC-peptide on APC membrane unknown
Lifetime of DC unknown
Half life of cytokine (this is the case
for all cytokines in the domain model) unknown

Table 2. The time taken for key events within EAE to occur. Some of these
biological parameters are not known.

A Domain Model of EAE 23

5.3 Modelling expected behaviours

The expected behaviours of autoimmunity (“Immune system cells harm
CNS cells”) and regulation, as depicted on Figure 4, represent system-
wide behaviours that manifest from low-level interactions between cells.
Activity diagrams represent a powerful medium in which to express how
these scenarios occur. The activity diagrams in Figures 5 and 6 depict the
order in which events at the individual cell level occur for autoimmunity
and regulation to manifest. Figure 7 shows how the single cell events in
regulation (Figure 6) translate to deviation from autoimmunity at the
system-wide level.

The events depicted as activities in these activity diagrams are ab-
stract concepts. They do not themselves specify the behavioural dynam-
ics of individual cells given a range of scenarios; that is accomplished
through use of state machine diagrams, discussed below. The activity
diagrams are very effective at showing how the individual cell-level dy-
namics expressed in state machine diagrams integrate to constitute a
system-wide dynamic. EAE contains many cascades of events, and the
top level behaviours manifest from the interactions of population dynam-
ics which themselves manifest through the concurrent actions of many
individual cells. Of all the diagrams defined within UML, activity di-
agrams are the most expressive in terms of depicting a break down of
system-wide dynamics.

From the activity diagrams that depict scenarios within the system,
class diagrams that represent a static perspective of the scenario can
be created. Figures 8 and 9 represent class diagrams of EAE and reg-
ulation respectively. Class diagrams are concerned with expressing the
relationships that entities in the system hold with one another, and the
number of entities that take part in those relationships at any particular
point in time. These diagrams are somewhat informative for EAE and
its recovery; however, reasoning about the system in a static manner
is not as informative to its operation as is examination from a dynamic
viewpoint. Ordinarily there is little to constrain the number of biological
entities that attempt (either successfully or not) to partake in a partic-
ular interaction at a time, and this can potentially manifest in “0..*”
cardinalities on class diagrams (note that in diagrams 8 and 9 this is not
the case, due to assumption 1). “0..*” cardinalities appearing all over a
diagram can perhaps convey that the system is complicated, but they do
not highlight how the system operates. Furthermore, in biology there is
relatively little to stop anything from attempting to interact with any-
thing else, and many such interactions produce effects. This can lead
to highly connected class diagrams that are difficult to interpret in a
meaningful manner. The approach taken in Figures 8 and 9 has been to

24 Read, Timmis, Andrews and Kumar

represent partial class diagrams that depict a subset of the entire system;
in this case delineated by how low level entities manifest different high
level system-wide behaviours.

5.4 Capturing low-level dynamics of system entities

State machine diagrams are used to depict low-level behavioural dynam-
ics, and are constructed for all entities that either actively change the
state of the system, or those that play important roles in mediating
system dynamics.

Correctly capturing the dynamics of a complex biological entity, such
as a cell, on a two dimensional diagram can prove challenging. The dy-
namics of a cell exhibit high dimensionality, and the dimensions are not
necessarily completely independent. As an example, Figure 10 shows the
state machine diagram for a CD4Th1 cell. The locations in which the
CD4Th1 cell may reside are depicted as a mutually exclusive set of states
that are orthogonal to the rest of the cell’s behaviour; however this is
not really the case. The state transitions that depend on binding with
MHC-II-MBP complexes can only occur when the cell is in the SLO
or CNS compartments, since these are the only locations in the model
where APCs reside. Depicting this diagrammatically would make the di-
agram very cluttered. The use of guards for relationships such as this
would add to the complexity of the diagram. This particular example
is covered by the case that the state machine diagrams of the dendritic
cell and CNS macrophage (Figures 15 and 16) indicate where they can
reside. However, the purpose of these models is to be informative and
transparent; excess complexity should be avoided.

There are behavioural aspects that are impossible to represent thr-
ough conventional use of state machine diagrams. For example, Figure
15 presents the state machine diagram for a dendritic cell. The levels
of MHC-I-peptide presentation are dependent on: being licensed by a
CD4 T cell; the quantity of peptide available within the cell for presen-
tation; the level of stimulation within the cell, which is itself dependent
on the perception of CFA and type 1 cytokines. Exactly how these vari-
ables interact with one another to dictate MHC-I-peptide presentation
is not completely clear; resolution of these unknowns will require exper-
imentation with the simulation and interaction with the domain expert.
However, even if this were not the case, state machine diagrams incorpo-
rate no way for us to represent these complex relationships and variable
values without the use of equations or significant quantities of text.

Several of the state machine diagrams presented here incorporate a
single state with no transitions to alternative states that is orthogonal
to the others, for example “express MHC-II-peptides” on Figure 16. It

A Domain Model of EAE 25

Fig. 5. Activity diagram representing the order of low-level inter-cellular
events that lead to EAE.

26 Read, Timmis, Andrews and Kumar

Fig. 6. Activity diagram representing the order of low-level inter-cellular
events that lead to regulation mediated recovery from EAE. This diagram
leads into Figure 7

A Domain Model of EAE 27

Fig. 7. Activity diagram representing regulation mediated recovery from EAE.
This diagram follows from Figure 6.

Fig. 8. Class diagram depicting the entities responsible for EAE.

28 Read, Timmis, Andrews and Kumar

Fig. 9. Class diagram depicting the entities responsible for regulation mediated
recovery from EAE.

is unconventional to express only one state in this manner, but the ap-
proach has been useful in depicting certain activities of cells.

It has proven useful to construct state machine diagrams of entities
that do not necessarily carry state. For example, Figures 19 and 18 re-
spectively show the locations in which MBP molecules may reside, and
the effects that INF-γ has on cells the perceive them. These aspects do
not necessarily comprise internal states of the molecules portrayed in
the state machine diagrams. However, since these system elements me-
diate the actions of other elements that do carry state, then it can be
informative to depict the system from their perspective.

Several of the state machine diagrams in this model depict the physi-
cal locations in the model where a cell may reside. It can be argued that
a cell’s physical location is not part of its internal state, but depicting it
in this manner is informative. A similar approach has been used by [9].

A Domain Model of EAE 29

Fig. 10. State machine diagram of a CD4 Th1 cell.

30 Read, Timmis, Andrews and Kumar

Fig. 11. State machine diagram of a CD4 Th2 cell.

A Domain Model of EAE 31

Fig. 12. State machine diagram of a CD8 Tc cell.

32 Read, Timmis, Andrews and Kumar

Fig. 13. State machine diagram of a CD4 Treg cell.

A Domain Model of EAE 33

Fig. 14. State machine diagram of a CD8 Treg cell.

34 Read, Timmis, Andrews and Kumar

Fig. 15. State machine diagram of a dendritic cell.

A Domain Model of EAE 35

Fig. 16. State machine diagram of a CNS macrophage.

36 Read, Timmis, Andrews and Kumar

Fig. 17. State machine diagram of a CNS cell.

Fig. 18. State machine diagram of INF-γ, a cytokine.

A Domain Model of EAE 37

Fig. 19. State machine diagram of MBP.

38 Read, Timmis, Andrews and Kumar

5.5 Representing feedback

Activity diagrams can demonstrate the order in which critical interac-
tions and events must take place for a high level behaviour to manifest.
However they (incorrectly) imply that one activity stops and another
starts. In reality the entity responsible for a preceding activity does not
hand off control to that which follows, it continues and can potentially
perform the same activity again. This concurrency amongst system ele-
ments can manifest in feedback, where an increasing number of elements
engage in some activity.

To give two examples in the context of Figure 5, a fully activated
CD4Th1 will not stimulate a single CNS macrophage and then stop, it
will repeat this process. Likewise, the death of a CNS cell (through the
secretion of TNF-α, ROS, and NO by a CNS macrophage) will lead to
its phagocytosis by a CNS Macrophage, which then presents MBP to
additional naive CD4Th1 cells, facilitating their activation and accel-
erating the progress of EAE. This latter feedback can further amplify
the effect of the former. Relative population dynamics play a significant
role in EAE (for example, consider the interplay between CD4Th1 and
CD4Th2 cells) and it is important to communicate this information in
the domain model. Depicting these feedbacks, and others like them, on
the activity diagrams will significantly clutter it; as yet we have found
no mechanism within UML to satisfactorily express these feedbacks and
the interplay between them.

6 Conclusion

We believe that the modelling of a complex system is a necessary pre-
cursor to the implementation of a simulation of that complex system.
It is necessary to demonstrate a detailed understanding of the complex
system of interest and have this validated by a domain expert. If one’s
understanding of the system is incorrect then the simulation will not be
representative of the real world system; uncovering such errors can be
difficult and time consuming. A model of a complex system can serve as
a specification for a simulation, and its validation by a domain expert
can deliver some measure of confidence in the simulation’s own validity.

We have presented here a domain model of experimental autoimmune
encephalomyelitis (EAE), a complex autoimmune disease in mice, and
its regulatory T cell mediated recovery. The models are expressed using
UML, and the creation of the present domain model has afforded insights
into UML’s expressive capabilities when applied to complex systems.

Complex systems tend to exhibit many interactions between enti-
ties within the system. Attempting to capture all this interaction in one

A Domain Model of EAE 39

diagram that fully describes the system renders the diagram cluttered
and illegible. Since a primary purpose of creating a domain model is to
communicate one’s understanding of a complex system a balance must
be struck between fully specifying the system where ever possible and
maintaining informative diagrams. We have found it useful to identify
the scenarios in EAE, being autoimmunity and recovery, and depict these
separately using activity diagrams. Class diagrams of the entities that
partake in a scenario have been constructed, but we have found their
contribution to the model to be minor; diagrams that depict system dy-
namics and the order in which events that comprise a scenario take place
have been more relevant than a static depiction of all the interactions
that are possible. UML state machine diagrams of system entities that
don’t themselves carry state or instigate interactions, but do mediate
interactions between other entities have been informative.

The dynamics of EAE are heavily dependent on the interplay be-
tween cell populations and feedback mechanisms. We have found no sat-
isfactory method to use UML in expressing these aspects of the system.
Biological cells incorporate many features that are subject to continuous
domains, such as variable levels of stimulation or molecule expression.
These aspects cannot be expressed through state transitions alone, and
require either textual explanation or use of equations to specify. UML
encompasses several mechanisms that have proven useful in modelling
EAE; however, in its current form, UML alone is insufficient to fully
specify the system.

The CoSMoS minimal process, the principled approach to complex
system simulation development that we are following, is iterative. As we
explore EAE through simulation and investigate alternative hypothe-
ses concerning its operation our domain model may require amendment.
Should we wish to investigate the effect that a cell previously not repre-
sented in the simulation has on EAE our domain model will be modified
to reflect its incorporation into the system. Validation of the domain
model by a domain expert is intended to provide some measure of con-
fidence in the results of experimentation with a simulation. The model
must be maintained to reflect the experiments we conduct, and changes
must be validated.

The next stage in our work is to refactor the domain model into
an implementation specific simulation model. The simulation model will
form the specification for the construction of a simulation, and will be
used to conduct in silico experimentation with the intention of gaining
insights into EAE’s nature and operation.

40 Read, Timmis, Andrews and Kumar

7 Acknowledgements

The work of Paul Andrews is supported by the CoSMoS project, EPSRC
grants EP/E053505/1 and EP/E049419/1.

References

[1] Complex Systems Modelling and Simulation Infrastructure (CoSMoS)
project homepage. http://www.cosmos-research.org/.

[2] Paul S. Andrews, Fiona Polack, Adam T. Sampson, Jon Timmis, Lisa
Scott, and Mark Coles. Simulating biology: towards understanding what
the simulation shows. In Stepney et al. [21], pages 93–124.

[3] Paul S. Andrews, Adam T. Sampson, John Markus Bjrndalen, Susan
Stepney, Jon Timmis, Douglas N. Warren, and Peter H. Welch. Investi-
gating patterns for the process-oriented modelling and simulation of space
in complex systems. In ALife XI, Winchester, UK, September 2008, pages
17–24. MIT Press, 2008.

[4] Paul S. Andrews, Adam T. Sampson, Fiona Polack, Susan Stepney, and
Jon Timmis. Cosmos development lifecycle, version 0 (in preparation).
Technical report, The University of York, 2008.

[5] Etty N. Benveniste. Role of macrophages/microglia in multiple sclero-
sis and experimental allergic encephalomyelitis. Journal of Molecular
Medicine, 75(3):165–173, March 1997.

[6] Hugues Bersini. Immune system modeling: The OO way. In ICARIS,
pages 150–163, 2006.

[7] Sol Efroni, David Harel, and Irun R. Cohen. Toward rigorous compre-
hension of biological complexity: Modeling, execution, and visualization
of thymic T-cell maturation. Genome Research, 13:2485–2497, 2003.

[8] Martin Fowler. UML Distilled. Addison-Wesley, 3rd edition, 2004.
[9] Philip Garnett, Susan Stepney, and Ottoline Leyser. Towards an Exe-

cutable Model of Auxin Transport Canalisation. [21], pages 63–91.
[10] David Harel. Statecharts: A visual formalism for complex systems. Sci-

ence of Computer Programming, 8(3):231–274, June 1987.
[11] Jerome J. A. Hendriks, Charlotte E. Teunissen, Helga E. de Vries, and

Christine D. Dijkstra. Macrophages and neurodegeneration. Brain Re-
search Reviews, 48(2):185–195, April 2005.

[12] Na’aman Kam, Irun R. Cohen, and David Harel. The Immune System
as a Reactive System: Modeling T Cell Activation with Statecharts. In
Proceedings of Visual Languages and Formal Methods (VLFM’01), part
of IEEE Symposium on Human-Centric Computing, pages 15–22, 2001.

[13] Thomas J. Kindt, Richard A. Goldsby, and Barbara A. Osbourne. Kuby
Immunology. W. H. Freeman and Company, 6th edition, 2007.

[14] Vipin Kumar. Homeostatic control of immunity by TCR peptide-specific
Tregs. The Journal of Clinical Investigation, 114(9):1222–1226, Novem-
ber 2004.

A Domain Model of EAE 41

[15] Vipin Kumar and Eli Sercarz. An integrative model of regulation centered
on recognition of TCR peptide/MHC complexes. Immunological Reviews,
182:113–121, 2001.

[16] Loui Thomas Madakamutil, Igor Maricic, Eli E. Sercarz, and Vipin Ku-
mar. Immunodominance in the TCR repertoire of a TCR peptide-
specific CD4+ Treg population that controls experimental autoimmune
encephalomyelitis. The Journal of Immunology, 180(1):4577–4585, April
2008.

[17] Object Management Group. Maintainer of the unified modelling language
standards. http://www.uml.org.

[18] Gennadij Raivich and Richard Banati. Brain microglia and blood-derived
macrophages: molecular profiles and functional roles in multiple sclerosis
and animal models of autoimmune demyelinating disease. Brain Research
Reviews, 48(3):261–281, November 2004.

[19] Mark Read, Paul S. Andrews, and Jon Timmis. Using UML to Model
EAE and its Regulatory Network. To appear in ICARIS ‘09, 2009.

[20] Avital Sadot, Jasmin Fisher, Dan Barak, Yishai Admanit, Michael J.
Stern, E. Jan Albert Hubbard, and David Harel. Toward Verified Bio-
logical Models. IEEE/ACM transactions on Computational Biology and
Bioinformatics, 5(2):223–234, April-June 2008.

[21] Susan Stepney, Fiona Polack, and Peter Welch, editors. Proceedings of
the 2008 Workshop on Complex Systems Modelling and Simulation, York,
UK, September 2008. Luniver Press, 2008.

[22] Bart R. Tambuyzer, Peter Ponsaerts, and Etienne J. Nouwen. Microglia:
gatekeepers of central nervous system immunology. Journal of Leukocyte
Biology, published online. doi:jlb.0608385, November 2008.

[23] Xiaolei Tang, Igor Maricic, Nikunj Purohit, Berge Bakamjian, Lisa M
Read-Loisel, Tara Beeston, Peter Jensen, and Vipin Kumar. Regulation
of immunity by a novel population of Qa-1-restricted CD8αα+tcrαβ+ T
cells. The Journal of Immunology, 117:7645–7655, 2006.

A Domain Model Assumptions

This appendix details the assumptions that have been made in creating
the present domain model of EAE. Assumptions are labelled with the
cell or phenomenon that they correspond to, and are numbered.

CD4Th1-1. All CD4Th1 cells considered in this domain model are spe-
cific for MHC-II-MBP complexes only, though their individual affini-
ties for the complex may vary. An implication of this assumption is
that the spatial/binding events brought about by Th cells of other
specificities are absent.

CD4Th2-1. All CD4Th2 cells considered in this domain model are spe-
cific for MHC-II-MBP complexes only, though their individual affini-
ties for the complex may vary.

42 Read, Timmis, Andrews and Kumar

CD4Th2-2. CD4Th2 cells do not license APCs in this model, and they
do not provide “help” to any cell (the model contains no B cells).

CD4Treg-1. All CD4Treg cells considered in this domain model are spe-
cific for MHC-II-Fr3 complexes only, though their individual affinities
for the complex may vary.

CD8Tc-1. All CD8 Tc cells considered in this domain model are specific
for MHC-I-MBP complexes only, though their individual affinities
for the complex may very.

CD8Tc-2. A single CD8 Tc cell can induce apoptosis in at most one
CNS cell at any specific point in time.

CD8Treg-1. All CD8 Treg cells considered in this domain model are
specific for MHC-I-CDR1/2 complexes only, though their individual
affinities for the complex may vary.

CD8Treg-2. A CD8 Treg can induce the apoptotic death of at most one
CD4Th1 cell at any point in time.

CD8Treg-3. CD8Treg cells as represented in this model cannot induce
apoptosis in APCs that express MHC-I-CDR1/2, although this is
potentially possible in vivo.

TCell-1. Cytokine secretion by a T cell is assumed to have only two
rates of secretion: none at all, or a steady rate of secretion. There is
no notion of variable secretion based on a cell’s stimulation, or any
other effect.

TCell-2. Activated T cells have associated with them an “excitation”
level. This is an abstraction of the cell’s internal metabolic activity.

TCell-3. Signal 1 and 2, delivered through bindings with MHC and co-
stimula-tory molecules, can only be derived through simultaneously
binding sufficient such molecules; there is no notion of how many
molecules were “recently” bound. In vivo this may not necessarily
be the case.

TCell-4. Where applicable, a CD4 T cell cannot simultaneously license
an APC and proliferate.

Cell-1. A cell can interact with at most one other cell at any point in
time. For example, a T cell can bind with molecules expressed on
only one APC at a time. In vivo these aspects are dictated by the
physical space surrounding a cell, and what occupies that space.

CNS-1. The “CNS Cell” of this domain model is an abstract represention
of the various MBP-expressing cells of the in vivo central nervous
system.

A Domain Model of EAE 43

CNS-2. An apoptotic CNS cell can be phagocytosed by only a single
dendritic cell.

CNS-3. CNS cells do not reproduce/divide.
CNS-4. CNS cells do not incur natural death.
CNS-5. Upon phagocytosis by an APC only MBP is received by that

APC. No other molecules that might stimulate the APC are derived
from phagocytosis of a CNS cell.

CNSMacrophage-1. CNS Macrophage is an abstraction of microglia and
macrophages that reside within the CNS during EAE. A study of
the literature has revealed that there is currently no consensus from
which the functions of macrophages and microglia can be distin-
guished within the context of EAE [5, 11, 18, 22]

CNSMacrophage-2. Secretion of TNF-α, ROS, and NO by CNS macro-
phages is at a constant rate, and occurs only when the cell is heavily
stimulated.

CNSMacrophage-3. CNS macrophages in this model do not secrete any
cytokines, other than TNF-γ.

Cytokine-1. This domain model represents all type 1 and pro-inflamm-
atory cytokines as one cytokine abstraction, called “type1”. Where
a specific cytokine (for example INF-γ) exhibits some function that
is not well represented by this abstraction, that specific cytokine is
explicitly represented, but only to serve the concerned function.

Cytokine-2. The model represents all type 2 cytokines as one cytokine
abstraction, called “type2”.

Cytokine-3. Despite being a pro-inflammatory type 1 cytokine, INF-γ is
not depicted in this model to suppress CD4Th2 cell activity, since
that is already handled by assumption 1.

DC-1. A dendritic cell can provide signal 2 to only a single T cell at a
time.

DC-2. A dendritic cell in this domain model will never die, though its
expression of MHC-peptide levels is variable.

DC-3. Dendritic cells in this model do not secrete any cytokines.

MHC-1. The only MHC-peptide complexes considered in this domain
model are: MHC-I-MBP; MHC-II-MBP; MHC-I-CDR1/2; MHC-II-
Fr3. No other MHC-peptide complexes are considered integral to
EAE or its recovery.

Co-stimulatory-1. CD4Th1, CD4Th2, and CD8Tc cells all require equal
quantities of co-stimulatory molecule bindings to derive signal 2.

44 Read, Timmis, Andrews and Kumar

Apoptosis-1. We have omitted any notion of an “anergy” state, since
anergic cells can be rescued though receipt of signal 2. T cells that
spend sufficient time in a “partially activated” state will become
apoptotic.

Apoptosis-2. In vivo, interaction between an anergic T cell and an APC
can have a regulatory effect on the APC. This is not represented in
this domain model.

On Non-Standard Numerical

Integration Methods for Biological

Oscillators

Andrew Hone?

Isaac Newton Institute for Mathematical Sciences,
20 Clarkson Road, Cambridge CB3 0EH, UK.

anwh@kent.ac.uk

Abstract. Mathematical models of biological processes, wheth-
er they be the dynamics of populations of individuals, cell popu-
lations within an organism, or reactions between different chem-
ical species within a cell, are traditionally formulated in terms of
differential equations. For a given model, specified by a system
of differential equations, in the generic situation one is unable to
solve the equations explicitly, and one must resort to numerical
integration methods. There are many standard numerical tech-
niques, both in the literature and in readily available software
packages. However, these techniques do not always reproduce
the required qualitative features of the solutions, particularly
if the system shows regular oscillations and the integration is
performed over long time periods. This article highlights some
non-standard discretization methods appearing in the work of
Kahan, Mickens and others, which have the potential to be ex-
tremely useful in modelling biological systems.

1 Introduction

The purpose of this article is to draw attention to some interesting de-
velopments in numerical analysis, and more specifically in numerical in-
tegration methods for ordinary differential equations, which have taken
place over the last twenty years or so, but have only started to filter into
the wider scientific community more recently. There is a vast literature
on numerical integration, and the standard methods for integrating ordi-
nary differential equations, namely Euler’s method, Runge-Kutta meth-
ods and their adaptive versions (Runge-Kutta-Fehlberg), and multi-step

? On leave from Institute of Mathematics, Statistics & Actuarial Science,
University of Kent, Canterbury CT2 7NF, UK.

46 Hone

methods (Adams-Bashforth-Moulton) are described in many introduc-
tory texts on differential equations (e.g. [32]) and have been implemented
in numerous software packages that are both highly sophisticated and
readily available. While the aforementioned techniques are rather suc-
cessful at dealing with generic differential equations, they can often come
unstuck for some particular problems of interest that arise in applica-
tions, particularly when such problems exhibit special properties such as
symmetries or conservation laws, or when there are solutions with some
special structure. Indeed, standard numerical integrators can completely
fail to capture the correct qualitative nature of the solutions of such prob-
lems, and can be extremely inefficient at providing accurate results. In
contrast, for numerical integration of differential equations that preserve
a measure or symplectic structure [31], and those that have conserved
quantities [29] or are even completely integrable [30], there are a vari-
ety of ad hoc methods that give more accurate and qualitatively correct
solutions with greater efficiency, because they retain the same features
as the original differential equations. A general approach to numerical
integration based on incorporating the symmetry structure of a problem
into a numerical scheme is known as geometric integration [4]. For some
applications, such as molecular dynamics, or the N -body problem in ce-
lestial mechanics, which has the inverse square force law, it can be very
important to conserve energy, but this poses serious technical difficulties
for numerical integration (see [16] and references).

While symmetries and conservation laws are common in physics, and
especially in mechanics, most differential equation models of biological
systems do not exhibit any particular symmetry. Nevertheless, these bio-
logical models can have particular special solutions (which, most impor-
tantly, are often attractors in the space of all solutions) whose features
are missed by conventional numerical integrators. For such systems, some
relevant techniques for constructing non-standard or unconventional in-
tegration methods has been developed in various works by Mickens, Ka-
han and other researchers. It is the latter set of techniques that are
outlined here.

This paper is a contribution to the CoSMoS workshop, which is
primarily concerned with agent-based simulations of real-life processes.
When considering the interactions of chemical or biological species with
a small number of molecules or agents, the use of continuous variables
is no longer relevant, as finite-size and stochastic effects become impor-
tant. In the latter context, ordinary differential equations cannot provide
successful models. Indeed, the differential equations considered here are
very trivial from this point of view. The Gillespie algorithm is the pro-
totype for an agent-based stochastic model of reaction kinetics, and this

Numerical Integration Methods for Biological Oscillators 47

stochastic model converges to the solution of the corresponding ordinary
differential equation model in the limit when the number of molecules
goes to infinity [8]. In all such models, whether they be deterministic
or stochastic, continuous or discrete, there are a number of parameters.
Some parameters, such as reaction rates (or the corresponding reaction
probabilities), have to be determined experimentally for the case of well
diluted mixtures of reagents with high concentrations (i.e. in the exper-
imental situation where the continuous differential equations do provide
a good model of the system). However, there can be other parameters
for which it is very difficult to provide an experimental measurement,
so that their values can only be inferred or fitted indirectly based on
simulations. In the latter case, a continuous model in terms of differ-
ential equations can provide a useful independent method to validate
or approximate the range of parameters to be used in an agent-based
stochastic model. All simulations, whether deterministic or stochastic,
are only attempts to model reality, and which type of model is more
realistic depends on the context. However, this paper deals exclusively
with the problem of accurately determining the behaviour of solutions to
differential equations by numerical integration. The question of whether
all these solutions correspond to aspects of the real chemical or biological
system being modelled is not addressed here.

To understand some of the problems that can arise with numerical
integration schemes, it is instructive to consider a very simple example,
namely the ordinary differential equation describing the logistic growth
of a population:

ṙ = ρr(1− r/K). (1)

In the above, r = r(t) denotes the size of a population with linear growth
rate ρ > 0, ṙ = dr/dt is the rate of change of the population, and K > 0
is the carrying capacity, which is the stable limiting population size as
t→∞. If one performs a numerical integration of this system using the
simplest technique available, namely the forward Euler method, then one
obtains the logistic difference equation

rt+h − rt
h

= ρrt(1− rt/K), (2)

where rt ≈ r(t) denotes the approximation to the solution of the or-
dinary differential equation at time t. The important thing to notice
about (2) is that, while it gives reasonable approximations to the solu-
tions of (1) for small enough h, it also displays behaviour not present
in the original model: as h increases the steady state K becomes unsta-
ble and goes through an infinite series of period-doubling bifurcations
leading to chaos [7]. Although the Euler method is the crudest possible

48 Hone

technique for numerical integration, this example illustrates the point
that discretization can introduce properties of the solutions that are not
present in the original continuous system.

In the next section, to set the scene, Kahan’s unconventional dis-
cretization [26] of the classic Lotka-Volterra predator-prey model is pre-
sented, and the solutions of this discrete model are compared with the
results of solving the corresponding ordinary differential equation using a
standard numerical package, namely Maple, implementing the Fehlberg
fourth-fifth order Runge-Kutta (RKF45) method. Kahan’s general tech-
nique for discretizing quadratic vector fields is described, and another
non-standard discretization of the same system, due to Mickens, is also
mentioned for comparison. The third section is concerned with a model
of a trimolecular reaction that exhibits a Hopf bifurcation and a limit
cycle (for a suitable range of parameters). By following the guidelines for
discretization due to Mickens, a discrete version of this trimolecular reac-
tion model is obtained, and the properties of its solutions are compared
with the continuous case. The final section contains some conclusions.

2 Discretization of predator-prey models

The classic Lotka-Volterra model for the interaction between a predator
population P (t) and its prey N(t), both specified at time t, has the form

Ṅ = N(a− bP), Ṗ = P (cN − d) (3)

for positive parameters a, b, c, d. Upon rescaling N,P and t it can be
reduced to the dimensionless form

ẋ = x(1− y), ẏ = y(x− α), (4)

which depends on the single parameter α > 0. For the interpretation
as a predator-prey model the variables x, y are considered only in the
non-negative quadrant x ≥ 0, y ≥ 0. There are two steady states of the
system: the fixed point (steady state) at the origin (0, 0) is an unstable
saddle point, while linearization around the steady state at (α, 1) gives
imaginary eigenvalues and hence a neutrally stable centre. (The reader
who is unfamiliar with linear stability analysis should consult the first
volume of [20], or [12].)

A complex conjugate pair of imaginary eigenvalues of the Jacobian,
at a fixed point in the plane, corresponds to periodic orbits around this
point in the linearized system, but then the linear analysis is insufficient
to determine the nature of the orbits for the original nonlinear system.
However, in this particular case it turns out that all the non-trivial orbits

Numerical Integration Methods for Biological Oscillators 49

for the nonlinear system (4) in the interior of the positive quadrant
are actually periodic, lying on closed curves H = H(x, y) = constant
encircling the point (α, 1), where

H = log(xαy)− x− y. (5)

The shape of twenty of these orbits can be seen in figure 1, in the case
α = 1. The quantity H is conserved along trajectories, and in fact the
system can be written in the non-canonical Hamiltonian form

ẋ = xy
∂H

∂y
, ẏ = −xy∂H

∂x
, (6)

so that (4) is analogous to a conservative system in classical mechanics,
with H corresponding to the “energy” (which is neither created nor de-
stroyed). Moreover, if we introduce new coordinates X = log x, Y = log y
in the positive quadrant x > 0, y > 0, then one can verify from the equa-
tions for ẋ and ẏ above that the infinitesimal area element A = dX dY
is preserved by the flow in time t, where dX and dY are the infinitesimal
line elements in the X and Y directions respectively. With a slightly more
sophisticated approach, one can use the fact that dX = d log x = 1

xdx
(and similarly for dY) and show that both the infinitesimal area and the
orientation in the plane are preserved by the flow. Mathematically this is
encoded into the statement that the oriented area element, or symplectic
form, given by

ω =
1
xy

dx ∧ dy, (7)

is independent of t; the expression dx ∧ dy has a clockwise orientation,
and dy ∧ dx = −dx ∧ dy has an anticlockwise one.

Standard numerical integration schemes reproduce the shape of the
orbits of (4) for relatively short times, but a well known problem is
that such schemes do not preserve energy, so that over long times the
orbits produced numerically either spiral inwards or outwards. To see an
example of this, here version 10 of Maple was used to integrate the system
for α = 1 with the command dsolve, which uses the RFK45 method
(an adaptive version of the Runge-Kutta method) and the default initial
stepsize h = 10−7. In order to integrate up to t = 5000 with this initial
timestep, the RFK45 method will typically generate of the order of 5×
1010 points, and then the Maple package can extract approximations to
the solution at a given sequence of t values. From a plot of part of a single
orbit, as in figure 2, one can see that the curve is somewhat thickened
compared with the curves obtained in figure 1 (to see this clearly, a
zoom in to the same part one of these curves is given in figure 2 for
comparison). The reason for this thickening is that the energy H actually

50 Hone

Fig. 1. Twenty orbits of the predator-prey system (4) with α = 1, generated
with Kahan’s discretization (8).

increases monotonically with t when the RFK45 method is applied to
the system (4). With α = 1 and the initial condition (x(0), y(0)) =
(0.9, 0.8), Maple was used to generate 50000 points {(x0.1t, y0.1t)}50000

t=0

of the numerical solution, which produced figure 2. Using these values the
energy Ht = H(xt, yt) was calculated and found to increase linearly with
t, as in figure 3, which shows the energy difference Ht − H0, with the
initial energy being H0 ≈ 2.0285041. (20-digit floating point numbers
have been used to perform all numerical calculations with Maple, set
with the Digits command.) For longer and longer integration times, the
numerically calculated orbit spirals outwards, so that the points (xt, yt)
lie in an increasingly thick band around the actual solution curve H =
H0.

To produce the qualitatively more accurate plot of closed orbits
shown in figure 1, a discretization of the Lotka-Volterra system due to
Kahan was used. This discretization method, which was apparently first
presented in some unpublished lectures by Kahan in 1993, is directly
applicable to systems of first order ordinary differential equations whose
right hand sides are at most quadratic (degree two) in all dependent

Numerical Integration Methods for Biological Oscillators 51

Fig. 2. Part of the orbit from numerical integration of the predator-prey sys-
tem (4) with α = 1 and initial point (0.9, 0.8), using the RKF45 method up
to t = 5000.

variables. Each derivative term on the left hand side should be replaced
by the standard forward difference (as in the Euler method), so that e.g.
ẋ becomes (xt+h − xt)/h ≡ (x̃− x)/h, where the tilde is used to denote
the forward time shift t → t + h. Each quadratic term is replaced by
an average involving products of variables at time t and those shifted
forwards, so e.g. xy on both right hand sides of (4) becomes 1

2 (x̃y+xỹ);
linear terms are also replaced by an average, so x (on the right hand side
of the equation for ẋ) becomes 1

2 (x̃ + x) in the discrete version. (There
are no purely constant terms in (4), but where such terms appear these
should be left as they are.) Applying these rules of discretization to (4)
with α = 1 produces the system of two difference equations given by

x̃− x
h

=
1
2

(
x̃+ x− (x̃y + xỹ)

)
,

ỹ − y
h

=
1
2

(
x̃y + xỹ − (ỹ + y)

)
. (8)

This discretizaton can be said to be nonlocal in time, in the sense that the
forward difference of each variable (on the left) is given by a function of
both the local variables (x, y) = (xt, yt) at time t and the forward shifted
variables (x̃, ỹ) = (xt+h, yt+h) (on the right).

52 Hone

Fig. 3. The energy difference Ht−H0 plotted against t for numerical integra-
tion using RKF45 as in figure 2.

The above system clearly reproduces the differential equations (4)
in the continuum limit h → 0, and has certain positive features which
are immediately obvious, perhaps the first being its inherent simplic-
ity (especially compared with the complexity of Runge-Kutta schemes,
for instance). A second important aspect is that the above discretiza-
tion scheme always has the same fixed points as the original differential
equation (these being (0, 0) and (1, 1) in the case at hand) and does not
introduce any extra ones. Thirdly, the two equations (8) are both poly-
nomial in x, y, x̃, ỹ, and the system is linear in both pairs of variables
x̃, ỹ and x, y, which means that it can be solved to give the updated x̃, ỹ
as explicit rational functions of x, y, and (vice-versa) the inverse trans-
formation is also given by explicit rational functions, so it constitutes a
birational map of the (x, y) plane (also known as a Cremona transforma-
tion; see e.g. [3] and references). Upon solving (8) for x̃, ỹ the following

Numerical Integration Methods for Biological Oscillators 53

Fig. 4. The same part of the orbit as in figure 2, but obtained from numer-
ical integration of the predator-prey system (4) with α = 1 and initial point
(0.9, 0.8), using Kahan’s method (8) up to t = 5000.

expressions are obtained:

x̃ =
x

(
4+(4−2x−2y)h+(1−x+y)h2

)
(

4+(2y−2x)h+(x+y−1)h2

) ,

ỹ =
y

(
4+(2x+2y−4)h+(1+x−y)h2

)
(

4+(2y−2x)h+(x+y−1)h2

) .

(9)

Each of the orbits shown in figure 1 was produced from 10000 iterations
of the transformation (9) with timestep h = 0.1, by starting with twenty
different initial conditions (x, y) = (x0, y0). Each orbit appears to lie
on a closed curve encircling the fixed point (1, 1), as is required for an
accurate representation of the solution of (4).

In order to probe the properties of Kahan’s discretization more closely
the same initial condition (x0, y0) = (0.9, 0.8) was taken as for the
RKF45 method, and then 50000 iterations of (9) were applied with
timestep h = 0.1 (to give a total time of length 5000 as before). The
energy of the iterates for Kahan’s scheme was calculated and the dif-
ference Ht −H0 was plotted against time as in figure 5; the results are

54 Hone

Fig. 5. The energy difference Ht−H0 plotted against t for numerical integra-
tion of (4) using Kahan’s discretization (8).

seen to be quite different. While for the RKF45 method the value of the
energy has increased by more than 3× 10−4 after time 5000 (and carries
on increasing linearly), Kahan’s method in contrast gives an oscillating
energy value that never increases or decreases by more than 10−5 within
the same length of time. This would be a consequence of the system (9)
having closed orbits lying on curves that are close to the original orbits
of (4), since in that case the oscillations in energy would be bounded
above and below. In [26], Sanz-Serna observed that Kahan’s discrete
Lotka-Volterra system is also symplectic, in that it preserves the same
area form as the original differential equation i.e. 1

x̃ỹdx̃∧dỹ = 1
xydx∧dy

holds. Since the differential equation is Hamiltonian and has one degree
of freedom, it is completely integrable, so that (as also mentioned in [1])
one can apply KAM theory in the neighbourhood of the elliptic fixed
point at (1, 1). Nevertheless, the stability of Kahan’s discretization of
the Lotka-Volterra model as a numerical scheme seems quite remark-
able.

Kahan’s method for discretizing quadratic vector fields is mentioned
in some of his published work with Li (see [14], and also [13], where it is
described how to turn it into a higher order method). More recently, it
has been applied to Lotka-Volterra models with three species [25], and

Numerical Integration Methods for Biological Oscillators 55

it has been shown that also in that case it correctly reproduces the same
qualitative features of the dynamics as are present in the corresponding
continuous systems. In fact, Kahan’s method for systems with quadratic
right hand sides was later rediscovered by Hirota and Kimura in the
context of integrable systems in classical mechanics, when they found
a new completely integrable discretization of the Euler equations for a
rigid body rotating about a fixed point [10]. A variety of new discrete in-
tegrable mechanical systems have been discovered very recently via this
approach [6, 11, 22], and the precise properties preserved by Kahan’s
scheme are currently the subject of theoretical investigation. However, it
is fair to say that Kahan’s method fits in with a rather broad set of princi-
ples for discretizing differential equations that was developed somewhat
earlier by Mickens, and is formulated in his book [18]. Mickens has used
his approach to study a wide variety of ordinary (and partial) differential
equations, and his non-standard methods have been implemented by a
number of researchers in different areas of science and engineering; an
extensive review can be found in [21].

Mickens has also applied his general guiding principles for discretiza-
tion to the same predator-prey model (4) in the case α = 1 [19]. Rather
than just replacing the linear term x by the average (x̃+ x)/2, one can
consider more general (asymmetric) replacements x → Ax̃ + (1 − A)x,
and similarly for the quadratic terms. Moreover, in the forward difference
Mickens takes a general denominator function φ(h) = h + O(h2); while
this has little effect for small h, it becomes important as h increases.
For certain systems there are explicit exact discretizations for which φ
must be specified precisely; one can also ensure that φ is bounded for
all h, e.g. by setting φ(h) = sinh. The particular discrete predator-prey
system given in [19] has the form

x̃− x
φ

= 2x− x̃− x̃y, ỹ − y
φ

= −ỹ + 2x̃y − x̃ỹ. (10)

Although the overall system is not linear in x̃, ỹ, the first equation can be
solved for x̃ and this can be put back into the second equation to find ỹ, so
that this gives another explicit birational map of the plane. Numerical
results show that the discrete system (10) also has closed orbits in a
large neighbourhood of (1, 1) for small values of h. It is straightforward
to verify that the map of the plane defined by the above equations for
x̃, ỹ preserves the same symplectic form ω = 1

xydx∧ dy as before, which
is an indication of why its stability properties appear to be the same
as for (9). The application of Mickens’ methodology to other Lotka-
Volterra systems in the plane is treated in [1] and [5]. For an implicit
discretization of the Lotka-Volterra predator-prey model, that conserves
energy, see [29].

56 Hone

As already mentioned, models in terms of conservative systems are
rather rare in ecology or biochemistry (although enzymatic reactions do
involve conservation of total enzyme [28]). The Lotka-Volterra model for
predator-prey interaction is somewhat unrealistic, because it predicts
that any non-zero pair of populations will go through periodic cycles,
and thus always return to their initial values after a fixed time. A more
realistic scenario is that there is a single attracting periodic cycle which
all solutions approach asymptotically, namely a limit cycle. In the next
section, limit cycles in reaction kinetics are considered.

3 Trimolecular reaction model

Biological systems that are close to equilibrium can be modelled ex-
tremely effectively by linear differential equations [2]. The disadvantage
of using linear models is that a linear differential equation of the form
ẋ = Mx, with a state vector x and matrix M , has only a single fixed
point at x = 0 (at least generically, when M has no non-trivial kernel).
Thus in order to allow the possibility of multiple equilibria, one should
use nonlinear systems. For nonlinear systems that are close to an equilib-
rium of node, spiral or saddle point type, the linearized system provides
correct qualitative information about solutions in the neighbourhood
of the fixed point [12]. The Euler method is exact for homogeneous au-
tonomous linear systems, so standard numerical integration methods are
usually completely adequate for modelling systems close to equilibrium.
Therefore in order to see novel phenomena that are inherently nonlinear,
and thus more difficult to analyze numerically, one should consider non-
linear models away from equilibrium. In this section we consider the ap-
plication of nonstandard integration schemes to nonlinear systems with
limit cycles.

It is worth emphasizing that quadratically nonlinear systems of differ-
ential equations arise immediately when one considers reaction kinetics
in chemistry, or biochemistry, where the fundamental processes are all
dimolecular, involving reactions of the form A+B→C, A→B + C, or
A+B→C +D, where A,B,C,D represent different molecular species.
Upon applying the Law of Mass Action to such reaction schemes, the
equation for the rate of change of concentration of each reactant is given
by a sum of linear and quadratric terms in the concentrations. Thus
Kahan’s discretization method, making symmetric replacements of vari-
ables, that is x → (x̃ + x)/2 for linear terms and xy → (x̃y + xỹ)/2
for quadratric terms, is ideally suited to numerical integration of reac-
tion kinetics models (where the variables x, y etc. would correspond to
concentrations). For the situation where N , the number of variables, is

Numerical Integration Methods for Biological Oscillators 57

Fig. 6. Numerical integration of (11) using the discretization (13) with stepsize
h = 0.1 for 2000 iterations starting from r = 0.1, θ = −π/2 (and plotting
(x, y) = (r cos θ, r sin θ)).

large, it is no longer practical to solve the system for the upshifted vari-
ables explicitly, as was done to obtain (9) from the original form (8) of
the discrete system, because this requires inversion of an N ×N matrix
whose entries are polynomial in the variables; this becomes an increas-
ingly difficult problem in symbolic algebra as N increases. However, the
system for the upshifted variables x̃, ỹ, . . . is always linear, so with nu-
merical values of the iterates there are efficient algorithms for solving
such systems, which will be stable when h is small, because in that case
the N × N matrix to be inverted (with numerical entries) is a small
perturbation of the identity.

In order to illustrate a simple example of a reaction scheme that in-
cludes a limit cycle, i.e. an isolated periodic solution corresponding to a
closed curve in the phase space, it is not sufficient to consider dimolecular
reactions with two reactants, because limit cycles cannot occur. Indeed,
one can write down a general two-species reaction model with variables
x, y and (by carefully studying all possible quadratic, linear, and even
constant terms) check that limit cycles never appear; in [20] (see p.234)
the first derivation of this result is attributed to Hanusse [9]. Thus in

58 Hone

Fig. 7. Plot of rt against t for 50 ≤ t ≤ 10000 from numerical integration of
(11) using the RFK45 method.

order to see periodic oscillations (which, unlike the predator-prey sys-
tem in the previous section, are not orbits in a conservative system) one
should either consider three or more species, or allow trimolecular reac-
tions. Here the latter option is taken, but first it is instructive to use a
toy model to illustrate how standard numerical integration methods fare
with limit cycle solutions.

A simple toy model of a limit cycle in the plane is provided by the
pair of differential equations

ṙ = r(1− r), θ̇ = 1 + r2, (11)

which is written in terms of polar coordinates r, θ to represent the evolu-
tion of the point (x, y) = (r cos θ, r sin θ) in the plane. The first equation
is just the continuous logistic growth model, and has the explicit general
solution

r(t) = 1/(1 + ke−t)→ 1 as t→∞, (12)

with arbitrary constant k. Thus the point (x(t), y(t)) approaches the
unit circle r = 1 as t → ∞, which is the limit cycle given by the exact
periodic solution (x, y) = (cos(2t), sin(2t)). Moreover, trajectories that
start inside the cycle remain inside (see figure 6), so r(t) < 1 for all t,

Numerical Integration Methods for Biological Oscillators 59

while those that begin outside approach it with r(t) > 1 always. However,
upon performing a numerical integration of the system (11) with the
RKF45 method in Maple version 10, it is observed that, after an initial
period of rapid change (starting from r0 = r(0) = 0.8 in the example
illustrated in figure 7), the value of the approximation rt ≈ r(t) oscillates
indefinitely between several different values, both above and below r = 1.
For an iterative integration method with fixed floating point precision,
one is dealing with a map in a finite state space, so all iterations must
either reach a fixed point or be periodic in the long run [24].

Alternatively, upon applying Kahan’s unconventional discretization
method to (11) one obtains the discrete system

r̃ − r
h

=
r̃ + r

2
− r̃r, θ̃ − θ

h
= 1 + r̃r, (13)

from which the equation for r decouples as

r̃ =
r(2 + h)

2 + (2r − 1)h
. (14)

The latter equation is of discrete Riccati type (it is a Möbius transfor-
mation), and has the exact solution

r = rt =

(
1 + k

(
2− h
2 + h

)t)−1

→ 1 as t→∞ whenever h > 0.

(15)
Thus the solutions of the latter discretization have precisely the same
qualitative behaviour as those of the original system of differential equa-
tions (11). The discrete equation for r has the same fixed points (an
unstable one at r = 0 and a stable one at r = 1) as for ṙ = r(1 − r),
but from a numerical implementation of (13) with timestep h = 0.1 and
20-digit precision in Maple 10, using the initial value r0 = r(0) = 0.8
(as for the RKF45 method), one finds that rt < 1 holds for all t but
the radius converges prematurely (in just over 400 steps) to the false
equilibrium r∞ = .99999999999999999952 < 1. This false value is due
to rounding errors, and can clearly be improved by performing the same
calculations using floating point numbers with successively more digits.

Having considered a toy model of a limit cycle, we now focus on the
following simple reaction scheme, including trimolecular reactions, that
was presented by Schnakenberg [27]:

X
k1
�
k2

A, B
k3→Y, 2X + Y

k4→ 3X. (16)

60 Hone

Fig. 8. Numerical integration of (17) with a = 1/6, b = 1/2 using the birational
map ϕh defined by (19), taking the first 5000 points on the orbit of (0.7, 1.2)
with h = 0.05.

In the above there are four molecular species A,B,X, Y and four rate
constants kj for j = 1, 2, 3, 4. If it is assumed that the concentrations
of A and B are both held constant, then upon applying the Law of
Mass Action and rescaling all the variables one obtains the dimensionless
differential equations

ẋ = a− x+ x2y, ẏ = b− x2y (17)

for the scaled concentrations of X,Y (denoted x, y respectively) and the
constants a, b > 0 (corresponding to the fixed concentrations of A,B).
The system (17) has limit cycle solutions for the parameter range b−a >
(b+a)3 with 0 < b < 1, giving a closed periodic cycle encircling the fixed
point at (a+b, b/(a+b)3) (see chapter 7 in [20] for details, and see figure
8 for numerical integration of an orbit with parameters in this range).

Due to the presence of the cubic (degree 3) terms x2y on the right
hand sides in (17), it is not possible to apply Kahan’s scheme for quadra-
tic vector fields. However, we can still obtain a non-standard discretiza-
tion in the spirit of Mickens’ approach. To do so, derivatives are replaced
by forward differences, the linear term x in the first equation of (17) is

Numerical Integration Methods for Biological Oscillators 61

Fig. 9. Two solutions of (17) for a = 1/6, b = 1/2 integrated numerically
using an adaptive modification of the scheme defined by (19), taking variable
stepsize hn+1 = hndn/dn+1 with h0 = h1 = 0.01 (where dn is the distance
between successive points).

replaced by the symmetric nonlocal expression (x̃ + x)/2, and for each
cubic term we make a replacement of the general form

x2y → (cy + dỹ)(ex2 + fxx̃+ gx̃2), c+ d = 1, e+ f + g = 1, (18)

where the constants c, d = 1 − c, e, f, g = 1 − e − f are allowed to be
different in each of the two equations. Without any further restrictions
on the latter constants, in general one has a multivalued map for x̃, ỹ: in
order to find these upshifted variables in terms of x, y one must solve a
pair of polynomial equations, which have multiple roots. However, if it
is required that the two equations have an unique solution for x̃, ỹ, and
furthermore that one can also solve uniquely for x, y, then there are only
two possible discretizations, namely

ϕh :
x̃− x
h

= a− 1
2

(x̃+ x) + xx̃ỹ,
ỹ − y
h

= b− x2ỹ, (19)

and

ψh :
x̃− x
h

= a− 1
2

(x̃+ x) + xx̃y,
ỹ − y
h

= b− x̃2y. (20)

62 Hone

The proof that these are the only possible uniquely invertible discretiza-
tions with the replacements (18) is somewhat cumbersome, and will be
presented elsewhere. In each case the pair of equations defines a bira-
tional map of the plane, ϕh : (x, y) 7→ (x̃, ỹ), given by

x̃ =
2x+ h(2a− x+ 2x3) + h2(2ax2 − x3)
2 + h(1− 2xy + 2x2) + h2(x2 − 2bx)

, ỹ =
y + hb

1 + hx2
, (21)

and similarly for ψh. Furthermore, it is not too hard to see from (19)
and (20) that these two transformations define each other’s inverses, in
the sense that ϕ−1

h = ψ−h, so henceforth we can concentrate on ϕh.
One can perform exact analysis of the Jacobian of the map ϕh at the

fixed point (a+ b, b/(a+ b)3); this is along the same lines as the analysis
for discretizations of Lotka-Volterra models done by Roeger [25]. Such
analysis shows that, just as the differential equation (17) undergoes a
Hopf bifurcation along the curve b − a = (b + a)3 in the (a, b) param-
eter space, which produces a limit cycle lying on an invariant curve in
the (x, y) plane, for small h the map ϕh similarly undergoes a Neimark-
Sacker bifurcation to produce an invariant curve which is at least O(h)
close to the limit cycle of the differential equation. (For technical de-
tails of Hopf and Neimark-Sacker bifurcations, see [15].) The correct
qualitative nature of the orbits of this discretization can be seen from
the numerical results. The first plot for (19) is the orbit of the point
(0.7, 1.2), shown in figure 8, for 5000 steps with stepsize h = 0.05, which
shows convergence towards the attracting invariant curve from the in-
side. In figure 9, results are shown of applying a simple modification to
the method to produce a crude adaptive scheme, by varying the stepsize
by a factor proportional to dn/dn+1 at each step, where dn = |xn−xn−1|
is the distance between successive iterates. The latter figure shows the
orbit of (0.5, 0.6) spiralling onto the invariant curve from the outside, to-
gether with the orbit of (0.7, 1.2), taking 20000 iterations with an initial
stepsize h = 0.01. The adaptive method shows better resolution than the
non-adaptive one in places where the solution of the ordinary differential
equation is varying more rapidly. We reserve the detailed properties of
the discretization (19), as well as a proper comparison with the RFK45
method, for a forthcoming article.

4 Discussion

For the modelling of biological phenomena in terms of systems of differ-
ential equations that exhibit truly nonlinear behaviour, standard tech-
niques for numerical integration can produce approximate solutions of

Numerical Integration Methods for Biological Oscillators 63

the equations which are qualitatively incorrect. However, the non-stand-
ard methods developed by Mickens and Kahan (among others) provide
simple discretization schemes that manage to incorporate the correct
qualitative features of the original continuous system. Thus the uncon-
ventional methods outlined above are worthy of consideration by anyone
who is interested in modelling with differential equations. Of course, a
considerable amount of theoretical work remains to be done in order to
understand precisely when and why such methods outperform conven-
tional ones. In particular, it is important to understand the complexity
of non-standard methods compared with Runge-Kutta schemes, e.g. in
terms of the number of arithmetic operations involved.

When implementing a numerical scheme, one wishes to avoid intro-
ducing new properties into the discrete system which were not present
in the original continuous one. We have asserted that Kahan’s discrete
predator-prey system (8) reproduces the closed orbit structure of the
differential equations (4), but to be more precise one should qualify this
by saying that this structure holds only in a certain neighbourhood of
the elliptic fixed point, with this region being large when h is small.
An undesirable feature of the scheme is that sufficiently large positive
values of x and y, beyond a boundary line, go outside the positive quad-
rant after iteration, but in fact the Kahan discretization also displays
the characteristics of a chaotic map in a fringe region before this bound-
ary is reached, with the size of this “chaotic fringe” increasing as h
increases [23] (and vanishing when h → 0). Of course, for modelling
predator-prey systems [17] or interacting populations in other biological
scenarios, one can avoid the problem of numerical integration altogether
by working directly with discrete models in terms of difference equations
or cellular automata [24]. Moreover, one might dispense with determinis-
tic models and work with purely stochastic systems. However, in setting
up such models one is often guided by intuition based on continuous
models in terms of differential equations.

In this paper, we have illustrated how non-standard discretization
methods can be used to study the simplest type of nonlinear oscillation
that is not exhibited by a linear system, namely a limit cycle. As far as
we are aware, the discretization (19) for the simple trimolecular reaction
equations (17) is new. Further analysis of this discrete system will be
presented elsewhere.

Finally, we should mention that although (due to the Poincaré-Bend-
ixson theorem [12]) only fixed points and limit cycles can arise as attrac-
tors in autonomous two-dimensional systems of differential equations,
in three or more dimensions there is the possibility of strange attrac-
tors, such as the one appearing in the famous Lorenz model. The Lorenz

64 Hone

model is defined by a quadratic vector field in three dimensions, and as
such can be integrated using Kahan’s unconventional scheme. Indeed,
the appropriate discretization has been presented as an example in [13],
and our own numerical experiments suggest that, for different values of
the stepsize h, this discrete system in 3D contains a strange attractor
which is qualitatively like the Lorenz attractor, and converges to it as
h→ 0.
Acknowledgments. The author is grateful to the Isaac Newton Insti-
tute, Cambridge for providing him with a Visiting Fellowship during the
completion of this work. He also thanks Matteo Petrera, Yuri Suris and
Claude Viallet for helpful correspondence and conversations on related
matters.

References

[1] H. Al-Kahby, F. Dannan, and S. Elaydi. Non-standard discretization
methods for some biological models. In R.E. Mickens, editor, Applications
of nonstandard finite difference schemes, pages 155–180. World Scientific,
2000.

[2] U. Alon. An Introduction to Systems Biology. Chapman and Hall/CRC,
2007.

[3] J. Blanc. Finite abelian subgroups of the cremona group of the plane. C.
R. Acad. Sci. Paris Ser. I Math., 344:21–26, 2007.

[4] C. J. Budd and A. Iserles. Geometric integration: numerical solution
of differential equations on manifolds. Phil. Trans. R. Soc. Lond. A,
357:943–1133, 1999.

[5] D. Dimitrov and H. V. Kojouharov. Nonstandard finite-difference
schemes for general two-dimensional autonomous dynamical systems.
Appl. Math. Lett., 18:769–775, 2005.

[6] V. Dragovic and C. Gajic. Hirota-kimura type discretization of the
classical nonholonomic suslov problem. Regular and Chaotic Dynamics,
13:250–256, 2008.

[7] S. N. Elaydi. Discrete Chaos. Chapman and Hall/CRC, 2000.
[8] D. T. Gillespie. A general method for numerically simulating the stochas-

tic time evolution of coupled chemical reactions. J. Comp. Phys., 22:403–
434, 1976.

[9] P. Hanusse. De l’éxistence d’un cycle limite dans l’évolution des systèmes
chimiques ouverts. C. R. Acad. Sci. Paris C, 274:1245–1247, 1972.

[10] R. Hirota and K. Kimura. Discretization of the euler top. Jour. Phys.
Soc. Jap., 69:627–630, 2000.

[11] A. N. W. Hone and M. Petrera. Three-dimensional discrete systems of
hirota-kimura type and deformed lie-poisson algebras. J. Geom. Mech.,
1:55–85, 2009.

[12] D.W. Jordan and P. Smith. Nonlinear ordinary differential equations.
OUP, 3rd edition, 1999.

Numerical Integration Methods for Biological Oscillators 65

[13] W. Kahan and R. C. Li. Composition constants for raising the order of
unconventional schemes for ordinary differential equations. Math. Comp.,
88:1089–1099, 1997.

[14] W. Kahan and R. C. Li. Unconventional schemes for a class of ordi-
nary differential equations – with applications to the korteweg-de vries
equation. J. Comp. Phys., 134:316–331, 1997.

[15] Y. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, 1998.
[16] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. CUP,

2004.
[17] R. M. May, M. P. Hassell, R. M. Anderson, and D. W. Tonkyn. Density

dependence in host-parasitoid models. J. Animal Ecol., 50:855–865, 1981.
[18] R. E. Mickens. Nonstandard finite difference models of differential equa-

tions. World Scientific, 1994.
[19] R. E. Mickens. A nonstandard finite-difference scheme for the lotka-

volterra system. Appl. Num. Math., 45:309–314, 2003.
[20] J. D. Murray. Mathematical Biology, volume I & II. Springer-Verlag, 3rd

edition, 2002.
[21] K. C. Patidar. On the use of nonstandard finite difference methods. J.

Difference Eq. Appl., 11:735–758, 2005.
[22] M. Petrera, A. Pfadler, and Y. B. Suris. On integrability of hirota-kimura

type discretizations. experimental study of the discrete clebsch system.
Exp. Math. to appear, 2009.

[23] M. Petrera and Y. B. Suris. Hirota-type discretization of 2d lotka-volterra
system. preprint, 2008.

[24] F. Robert. Les Systèmes Dynamiques Discrets. Springer, 2000.
[25] L. W. Roeger. A nonstandard discretization method for lotka-volterra

models that preserves periodic solutions. J. Diff. Eq. Appl., 11:721–733,
2005.

[26] J. M. Sanz-Serna. An unconventional symplectic integrator of w. kahan.
Appl. Num. Math., 16:245–250, 1994.

[27] J. Schnakenberg. Simple chemical reaction systems with limit cycle be-
haviour. J. Theor. Biol., 81:389–400, 1979.

[28] L. A. Segel. Modeling dynamic phenomena in molecular and cell biology.
CUP, 1984.

[29] B. A. Shadwick, J. C. Bowman, and P. J. Morrison. Exactly conservative
integrators. SIAM J. Appl. Math., 59:1112–1133, 1998.

[30] Y. B. Suris. The problem of integrable discretization: Hamiltonian ap-
proach, volume 219 of Progress in Mathematics. Birkhäuser Verlag, Basel,
2003.

[31] H. Yoshida. Construction of higher order symplectic integrators. Phys.
Lett. A, 150:262–268, 1990.

[32] D. G. Zill and M. R. Cullen. Differential equations with boundary value
problems. Brooks/Cole - Thomson Learning, 2005.

66 Hone

Environment Orientation: An

Architecture for Simulating

Complex Systems

Tim Hoverd and Susan Stepney

Department of Computer Science, University of York, UK, YO10 5DD
{tim.hoverd,susan}@cs.york.ac.uk

Abstract. A näıve implementation of a complex system simu-
lation with its plethora of interacting agents would be to rep-
resent those interactions as direct communications between the
agents themselves. Considerations of the real world that a com-
plex system inhabits shows that agent interactions are actually
mediated by the environment within which they are embedded
and which embodies facilities used by the agents. This suggests
an “environment oriented” simulation architecture.

Here we motivate and describe an abstract software architecture
for an environment oriented approach to complex systems sim-
ulation, and sketch the implementation of this architecture in a
number of different ways.

1 Introduction

Complex systems comprise of a number of agents that interact in some
particular environment. The behaviour of any individual agent is rela-
tively simple and local. A complex global behaviour emerges as a conse-
quence the interaction of a large number of such agents in a particular
environment.

A complex system can be simulated using computational devices to
provide an executable model of the real world situation. Like all such
models it should be constructed in manner that can feasibly be imple-
mented, and may well avoid many real world details. However, such a
model must encapsulate the key interactions between agents from which
emerges the global behaviour.

68 Hoverd and Stepney

2 Motivation

Complex systems get their emergent behaviour from interactions be-
tween the agents that comprise the system. Näıve implementation mod-
els therefore describe direct interactions between those agents.

Such an approach, however, leads to many implementation difficul-
ties. Firstly, scaling the number of agents in a simulation to something
representative of the modelled world is infeasible, because the number
of communication channels required rapidly exceeds the capabilities of
the simulation. Secondly, and of particular importance here, if such a
model were to be implemented without detailed attention paid to con-
currency issues, then it would doubtless deadlock very quickly because
of the loops apparent in the agent/channel graph. Consequently, such
näıve implementations are never seen.

These deadlock issues are resolved in simulations by the introduction
of techniques, such as the “client server” pattern for concurrent systems
[1, 12] and barrier synchronisation [2], which impose a processing pattern
onto communications between the various components of the simulation.
These patterns seek to prevent the appearance of deadlocks.

In the case of the client server pattern components of the simulation
are coded so as to operate in a manner reminiscent of “client-server”
enterprise systems [21] or, more generally, multi-tier architectures [24].
In such systems the clients and the servers are layers in an architecture
where the servers provide a pre-defined set of services to the clients.
Each client is able to operate in a manner largely independent of others
because the implementation of the system constrains the overall pat-
terns of behaviour, for example by transactional access to an underlying
repository [26], in such a manner as to guarantee various overall system
properties.

Use of this convention introduces a pattern into the simulation that
does not at first sight appear to exist in the real world being modelled.
For example, the birds that flock above a city-centre park are not appar-
ently working to some standard global pattern lest they deadlock and
fall out of the sky. It appears that each bird is observing other birds
and then doing what it wants, when it wants, and in whatever order it
wants doing so in the sure and certain knowledge that its world really
is deadlock free. That is, it appears as if the real world of these birds is
rather different from a set of agents communicating with each other in
a simulation of, for example, bird flocking behaviour.

The rest of this paper looks in more detail at what is really going on
in a such a complex system, leading to some alternatives for the software
architecture of complex systems implementations.

Environment Orientation 69

3 Real world agents and their environment

3.1 Action at a distance versus mediating fields

Let us think about how the real world agents actually interact. Although
at first sight it is convenient to think about flocking birds interacting
directly some thought shows that in fact this is a simplification of what
is really going on.

A bird flying along reflects the ambient light into the space around it;
as it sings it pressurises the air about it. Another bird, assuming that it
is awake, is sensitive to the propagated light and air pressure, and in this
way can both see and hear the first bird. That is, these two birds are not
directly communicating with each other. The first is placing information
into its environment, which information can be detected by the second
bird when it observes its own environment, if it is interested in that sort
of information.

Such a view, which is essentially an alternative model of interaction
between the birds, relies upon a very detailed environment in which
the agents, in this case the birds, are embedded. One bird can always
come along and look in the environment and see what another bird is
frequently placing in the environment. A different bird might update the
environment only seldomly, if it is just sitting quietly on some perch.

The real world is such a detailed environment; one where fields in-
teract, photons pass each other and the rest of physics is implemented
with ease. In this view the agents are embodied in the environment [19],
and it provides services to those agents. Each agent just does what it
wants without regard to direct interactions with other agents. That is,
even in the real world, the agents in a complex system are interacting in
a manner reminiscent of a client server architecture. The environment
provides services to the agents, in a manner analogous to a server. The
agents are clients of those services.

The näıve model of a complex system, with agents directly interacting
with each other, is essentially “action at a distance”. One agent must
know directly what other agents exist that are interested in it and must
directly interact with those agents. As this is happening those distant
agents are also potentially interacting in the reverse direction.

Reflecting our observation of the real world, we instead take an “en-
vironment oriented” approach. Here agents do not interact directly, but
communicate through some mediating fields that exist in their environ-
ment. In this approach there is no direct interaction at all; the lives of
individual agents just affect each other by existing within the same set
of fields; within the same physics.

70 Hoverd and Stepney

As a different example of this “environment orientation” consider
an adaptive immune system. Here the agents are the various molecules
and cells that form the active components. The molecules are not di-
rectly signalling to each other about the feasibility of particular interac-
tions. In this case an environment oriented model would represent these
molecules by their concentrations in the environment which would af-
fect the probability of interactions occurring as a consequence of the
stochastic processes mediated by the environment.

3.2 State

The notion of “environment orientation” reflects the real world in a
useful manner. However, what is it that agents communicate with the
environment?

In something like a collection of birds flocking in the real world each
bird has a large and complex internal state: it knows whether it is flying
or not, how hungry it is, whether it needs to drink or defecate. But,
from the point of view of flocking, other birds are interested only in the
distances between the birds and what the perceived relative velocities of
the other birds are.

That is, each agent has an “internal state” that represents everything
it needs to know to behave appropriately. Further, each agent exposes an
“external state” to the environment, which is available to other agents in
the same environment. This external state could be simply a subset of the
agent’s internal state. For example, in the case of the bird it could just be
that part of the internal state that represents the position and velocity
of the bird. However, there are cases where the agent could deliberately
mislead other agents with its external state. For example, when one
insect species mimics another it is deliberately creating external state to
mislead observers about its internal state.

Complex system agents are essentially egocentric. That is, the emer-
gent behaviour appears as a consequence of each agent just doing what it
wants to do in its own environment. A flocking bird, then, does not know
precisely where it is, just merely where other birds are relative to it. In
a complex system simulation, something does need to know where the
agents are, because those positions are the overall context of execution
of the complex system. This context is the environment. That is, the
environment must know where each agent, is and therefore the environ-
ment will know what other agents are in the vicinity of each agent. That
is, the environment knows things about the agents that are not actually
part of the agent’s internal state. For example, a bird just thinks that
it is flying in the direction of an interesting looking food source, but the
environment knows that it is actually flying north-by-northwest.

Environment Orientation 71

A refinement to this notion is the observation that an agent generates
some external state just by virtue of the physics of its environment. For
example, photons just bounce off a bird, so other birds can see it, and
are also able to infer position and velocity from those photons. This
“involuntary” external state is contrasted with other state placed into the
environment by an agent in a “voluntary” manner. Voluntary state could
be, in the example of birds, a song that is sung in response to hearing
the song of another bird of the same species (which it hears through
the mediating environment), sung maybe for territorial enforcement or
finding a mate.

3.3 Querying

In this environment oriented approach, each agent interacts with the
environment to access information about the other agents’ (external)
states. Simplistically, each agent “asks” the environment for information
about other relevant agents’ state (the agents it can see, or hear, for
example); this state information can then be used by the querying agent
to update its internal state appropriately.

The reply to such a query is a set of values in some topology [7],
which not only represents the set of all possible values but also describes
how the values might change.

For example, in a bird flocking example, one of the items in a query
result could represent a bird that is close to the querier. As such, the
environment can accurately describe the (relative) position of the nearby
bird and its velocity in terms of a three-dimensional Cartesian space.
Furthermore, the topology of the particular space used might show that
the nearby bird could move freely in the two horizontal dimensions but it
was constrained to move only upwards in the vertical dimension because
it is, at the moment, standing on the ground. That is, the reply to a
query about the position of the bird gives a precise position in a space,
but that space is further described by its extent and its shape.

If the bird being described is distant then the position of the bird
may not be accurately described; for example, it might be clear in what
direction the bird lies but its distance from the querier could be only
poorly known. Similarly, the velocity of the bird might be only poorly
described, if at all, as the velocity of a distant agent which appears
merely as a distant speck might be very hard to determine. In this case
the reply is again a position in a space. However, in this case that space
is two-dimensional being the surface of a portion of a sphere centred on
the querying agent. Because the distance to the observed bird cannot be
determined it cannot be moved inside or outside of that sphere.

72 Hoverd and Stepney

Here the simulated environment is acting as the embodiment of so-
phisticated functions performed in the real world by both the agent itself
and the environment. The agent itself detects the photons impinging on
its retinas from a distant bird and attempts to calculate size, distance
and velocity of the bird from those photons and, probably, experience in
these sorts of situations. The real world, that is the environment, affects
many aspects of the passage of those photons; it understands the albedo
of the distant bird and can calculate how photons from the Sun are re-
flected by the bird, and how effectively those photons are transferred to
the observing bird.

The environment oriented approach provides a way to separate con-
cerns between the agents and their environment. In a particular simula-
tion, the choice of what computation is performed by the environment,
and what by agents, is a modelling decision. Certain functions may be
embodied in the environment itself, and those calculations performed by
the environment. Alternatively, responsibility for those those functions
may be assigned to certain agents (either existing ones, or new ones
designed to support those functions).

The notion of the results of the query being embedded in a topology
allows the interaction between agents to follow a number of different
patterns simultaneously. The example given above is a purely spatial
one, the notion of space clearly being of significance in complex sys-
tems implementation as in [1]. However, the exact same query/response
model could be used for any interaction between agents in a complex sys-
tem. One extension of the simple spatial model is to note that a human
agent is physically “near” to a collection of other human agents but may
nonetheless communicate simply with other human agents whose tele-
phone numbers are in the first agent’s address book. That is, there are
two sorts of “nearness” here: one is physical nearness, the other is “com-
municable” nearness. For some aspects of complex systems behaviour
only the first sort of nearness would be relevant, for others both sets of
“near” agents might be important. (This example is inspired by Milner’s
bigraphical model designed to model both a spatial and a connectivity
configuration simultaneously [13].)

3.4 Environment orientation

In summary, the environment oriented approach to complex systems sim-
ulation eschews all representations of direct interactions between agents.
Rather, all agent behaviour is seen as mediated through the environment
within which all the agents are embedded; the essential rationale for this
being that this is the way that the real world is structured.

Environment Orientation 73

Although the notion of the role of the environment is based on obser-
vations of the real physical world, the particular agents and behaviours
that exist in a simulation is a modelling decision. Each simulation should
be constructed with the explicit knowledge of which aspects are to be
embodied in the environment.

Regardless of its particular role, each agent has an internal state,
representing what the agent knows of itself. It publicises some aspects
of its state, its “external state” to the environment within which it is
embedded. The agent may decide when to publicise its external state.
Agent behaviour is provided for by allowing the agent to retrieve, from
its environment, information about the external state of the agents with
which it is interacting. Consequently, the environment must be aware of
the agents with which each other agent can interact.

4 Software architectural styles

The “environment orientation” approach to complex systems must be
readily implementable to be of use as an implementation platform for
complex systems simulations. That is, we must define an abstract archi-
tecture that defines this sort of systems implementation.

The model as described is essentially a client server one. As has been
described, real world complex systems are inherently “client server” in
that the agents function essentially as clients of the environment.

A client server architecture is an appealing approach, since there
is considerable experience with this approach that forms the basis of
most high performance commercial computing. There are also several
standardised abstract client server architectures, such as the REST ar-
chitecture [4] that is the core of the Internet and the services it supports.
These show the value of defining services in this manner.

The server in an “environment orientation” complex systems imple-
mentation must provide services that:

1. retain the external state of agents
2. provide that external state to other agents as and when required

The second of these services must reflect what aspects of each agents’
external state is visible to a requesting agent. That is, the environment
must know which other agents are in the “neighbourhood” of a requesting
agent and must also know the topology of the result space in which to
embed responses to requests.

In addition to providing such services to its clients, that is the agents,
the environment may embody many aspects of the world that is being

74 Hoverd and Stepney

while (true)

{

Neighbourhood n = env.query(queryText,

<parameters drawn from internal state>)

internalState.update(n)

env.update(generateExternalState(internalState))

}

Fig. 1. Pseudo-code for agents using query oriented server

simulated or modelled. For example, if the complex system were mod-
elling ant communication via stigmergy [3] then the environment itself
could modify the external state of ant trails so that they decayed at the
appropriate rate. This approach is a particular modelling decision. Al-
ternatively, the ant trail might be modelled an agent; then it, and not
the environment, would implement the process of pheromone decay.

Some aspects of this sort of architecture are seen in [1] where the
implementation of various approaches to the representation of space in a
complex system are investigated. The related “boids” simulation (based
on [17]) uses a notion of “location” that is similar to the environment
oriented server discussed here.

The first of these services listed above is susceptible to many different
implementations, although the precise form of the delivered state is not
defined here.

For the second service, there are two strategies, relating to a possible
inversion of control. One approach would be for an agent that wishes to
see the external state of a set of other agents, to make a query of the
underlying “environment orientation” server. The query would provide
the server will all the information it needed, along with its knowledge
of the agents, to select the information required and provide it to the
agents. This strategy, referred to here as query oriented, is summarised
by the pseudo code in figure 1.

A complementary approach would be for agents to inform the server
of the sort of information they were interested in, and to have that
information delivered as and when it was available. In the meantime the
agent would carry on with its normal behaviour. This strategy, referred
to here as subscription oriented, is summarised by the pseudo code in
figure 2.

These two approaches have different characteristics. The query ori-
ented is appropriate for systems, perhaps like bird flocking simulation,
where an individual agent can always be sure that its environment will
change rapidly and apparently continuously. The subscription oriented

Environment Orientation 75

...

env.registerInterest(topic, callback)

...

void callback(Neighbourhood n)

{

internalState.update(n)

env.update(generateExternalState(internalState))

}

Fig. 2. Pseudo-code for agents using subscription oriented server

approach would be useful for systems where some information was avail-
able only occasionally and unpredictably, or where it was needed to “in-
terrupt” an agent from its normal activities. That is, in situations where
the particular environment was not changing apparently continuously.

In this abstract architecture, the server is the entire locus of inter-
agent concurrency. That is, the agents execute without consideration for
each other, simply relying on the server to provide pertinent information.
This is the approach used in the world’s largest commercial systems.

There are, though, at least two other issues that must be addressed
here.

The first concerns that of fairness. If an environment server is being
queried by a, potentially, very large number of clients then it must be
the case that requests from those clients are handled in a fair manner.
This is already an issue in multi-tier commercial systems and will not
be further addressed here as it seems likely that existing approaches will
satisfy the demands of a complex system simulation.

The second issue is that of time. Commercial systems are all “real
time” systems, in the sense that the clients are usually aware of what the
real world time is because that time is often pertinent to the processing
that is being carried out. For a complex systems simulation there are
further considerations. The simulation may run, as a whole, faster or
slower than real time. In particular, individual agents can run at different
rates from other agents, depending on how much processing they have
to do (an active flying flocking bird will require more processing time
to simulate unit time of its life than will an inactive perching sleeping
bird). That is, the simulation as a whole, and the components of the
simulation, are running in simulated time. As such, the “simulated time”
is properly part of the environment within which the simulation’s agents
are embedded. Hence, an environment server should also provide a time
service, that defines the current simulated time for each of the agents

76 Hoverd and Stepney

in the simulation. These agents can then, when necessary, consult the
current time and use that to influence their activities.

5 Implementations

The architecture discussion so far has been devoid of implementation
choices. The principal implementation choice is that of an environment
server that can

– support the agents’ external state where each item item of such state
is in essence a tuple that contains whatever information is necessary
for the particular application

– provide a means of accessing and distributing that state
– provide a mechanism for tracking the progress of simulated time

For example, in a bird flocking simulation each tuple retrieved by, or
presented to, an agent would include another agent’s relative position
and perceived velocity. Additional entries in the tuple would allow the
topology of the result space to be determined. For example, if the agent
in question was distant then the perceived velocity might well be repre-
sented in a single-dimensional space with very restricted possible changes
instead of the three-dimensional space that would be appropriate for the
velocities of nearby agents.

Regardless of these decisions, the data provided to a requesting agent
takes the form of tuples. There are several possible implementation
choices for how a server could provide the supply of tuples, described
below.

5.1 Tuple spaces

The Linda programming language was first proposed in the mid 1980s [6]
as a new way of handling concurrency and coordination. A running Linda
system provides a “tuple space” which is populated, and examined, by
a potentially large collection of concurrently executing agents. Linda
provides primitives allowing the connected agents both to query the tu-
plespace for tuples that match some expression and to block waiting for
an appropriate tuple to appear. As such the model supports both types
of server architecture discussed in a straightforward manner.

The Linda concepts have been implemented in a number of mod-
ern programming languages. For example, JavaSpaces [5, 11] provides
Linda-like facilities in the Java programming language as part of the Jini
infrastructure. Rinda [18] provides tuplespaces for Ruby. TSpaces [8] is
a simple implementation of the Linda ideas within Java from IBM.

Environment Orientation 77

A refinement of tuple spaces which is also relevant to this subject
is that of tuple centres [16]. Tuple centres are essentially the notion of
tuple spaces which have some behaviour. As such, a tuple centre could
be seen as the implementation of a particular environment server.

5.2 Publish/Subscribe systems

The publish/subscribe pattern [25] is frequently supported by enterprise
middleware, in particular by message oriented middleware [23]. For ex-
ample, the Java Message Server [15] provides publish/subscribe facilities
for users of the Java 2 Enterprise Edition. The publish/subscribe pattern
provides for a server to distribute information on a number of topics to
a number of connected clients. The pattern is often used, for example,
in trading systems where some clients might require to be informed of
changes in the prices of particular financial instruments when they occur.
This is a very similar situation to that described as here as subscription
oriented. A topic here could be, for example in the context of a bird
flocking system, “the state of agents in the vicinity”. Whenever one of
those agents does indeed move the agent that registered the topic could
be informed of a set of new tuples of information.

Publish/subscribe systems are used commercially in situations where
there is a very high data rate, such as the instrument/price situation de-
scribed above. As such they are also suitable for distributing information
in a complex system simulation.

5.3 RDBMS

The use of a relational database management system (RDBMS) is a
further possible implementation mechanism. Relational databases are
essentially large containers for tuples. Each table in the RDBMS is a set
of tuples with the same layout. Furthermore RDBMSs provide a highly
expressive declarative query language (SQL [9, 10]) and are commonly
used in situations where very high performance is required. As such they
provide an attractive mechanism for the query oriented approach to the
abstract architecture.

It is less clear how an RDBMS could be used for the subscription
oriented architectural pattern. RDBMSs do support mechanisms that
are capable of use in this manner (typically, triggers). However, they are
clumsy in use and probably not suitable for the very flexible scenarios
of complex systems.

78 Hoverd and Stepney

5.4 Process oriented programming languages

Process oriented programming is at the heart of the CoSMoS1 project (of
which this work is part). The environment oriented architecture could
be implemented using a process oriented language such as occam-π [20].
This is the language used for the models of space described in [1]. Using
occam-π to implement simulations with the environment oriented archi-
tecture would ideally require the definition of a set of standard libraries
that would hide many of the internal details, and allow the programmer
to operate at a higher level of abstraction, purely in terms of things like
tuples and queries.

6 Prototypes

We have implemented prototype complex systems simulations following
the environment oriented architectural style. These prototypes have ex-
plored only the query oriented approach to the server. In particular, two
prototype systems have been implemented, each of which is an imple-
mentation, in Java, of Reynolds’ Boids [17], a very simple set of rules to
simulate flocking.

As yet neither of the prototypes has been subjected to significant
performance analysis and testing. In this first instance, we are simply
establishing the capabilities of the abstract architecture.

6.1 Tuplespace prototype

The first prototype is an implementation using TSpaces (chosen due to
the simplicity of configuring the server as compared with JavaSpaces).

The design of this system uses a single TSpaces server, running as
a separate heavyweight process (a process running under control of the
operating system and isolated from other such processes). A single boids
heavyweight process implements each boid with a separate thread (a
lightweight process not isolated from other such threads by operating sys-
tem mechanisms). Each such thread executes an instance of the pseudo-
code shown in figure 3, which is a simple variant of that shown in figure 1.

So each boid gets the tuples about boids in its neighbourhood, del-
egating the notion of what “its neighbourhood” means to the environ-
ment itself. As far as the boid is concerned it is querying for “all the
boids”. The environment knows where each boid is in the entire world
and answers a relative neighbourhood of the querier: the positions on
the boids in the returned neighbourhood are expressed relative to that
1 http://www.cosmos-research.org

Environment Orientation 79

while (true)

{

Neighbourhood n = env.query("allBoids")

Vector acceleration = n.centreOfMassRule() +

n.matchVelocityRule() +

n.repelBoidsRule()

velocity = velocity + acceleration

env.updateTuple(boidId, velocity)

wait(short_delay)

}

Fig. 3. Pseudo-code for Reynolds’ boids using query oriented server

of the querier. Furthermore, only the boids that are in what the envi-
ronment deems to be “the neighbourhood” of the querier are supplied
in the neighbourhood.

The boid uses the returned neighbourhood information to implement
the three rules of Reynolds’ algorithm, using the relative positions pro-
vided in the neighbourhood, to calculate its acceleration, which is ap-
plied to its internal state, here just the boid’s velocity. The environment
is then updated with its external state which in this simple example is
the same velocity. There is no “position” in this state, because the boid
is just where the boid is. It is up to the environment to know where the
boid actually is in world, which it can calculate from the boid’s velocity.

Nowhere in this pseudo-code, or in the Java code actually written,
is there anything about directly coordinating the activities of separate
boids. All of these details are delegated to the environment, which em-
bodies both a knowledge of the world as a whole, for example it knows
that it is a toroidal space, and of the perception of the boids, that is it
knows how far away a boid has to be to be deemed “not in the neighbour-
hood”. In this simple example, it is not necessary for the environment
to support a time server, as each boid agent performs the same amount
of processing to update its state.

A consequence of this lack of interaction between boids is that other
versions of the same code, ones where multiple boid agents are supported
by each thread, can been written. Each thread sequentially executes the
same code for each of the boids in its control. The behaviour of this
variant is essentially identical to the thread per boid version, although
requiring fewer threads.

The implementation of the environment is carried out by using a
façade object [22], in the boids process, that provides a layer above the
TSpaces server itself. This façade, in the TSpaces code, retrieves all of

80 Hoverd and Stepney

the boids from the server and filters them for locality before presentation
to the querier as the querier’s neighbourhood. It must be done this way
because the TSpaces query mechanisms are limited to essentially pat-
tern matching between a template tuple and the tuples in the server’s
tuplespace.

There are TSpaces mechanisms that could be used to implement an
“interrupt oriented” server but these have, as yet, not been investigated.

6.2 RDBMS prototype

A second prototype has also been constructed that uses an RDBMS,
specifically MySQL [14]. This prototype also functions well.

The code executed by the RDBMS version is much the same as for the
TSpaces variant. The difference, though, is in the environment façade.
The RDBMS version can be much simpler, as the process of filtering for
local boids may be done using SQL in the database query itself.

7 Future work

The architecture as described is the essential core of the environment
oriented approach to complex systems simulation. Future work will con-
centrate on two main issues.

The first issue is that of the appropriateness, or otherwise, of the two
architectural patterns, query orientation and subscription orientation.
This will be investigated by producing further prototype implementa-
tions that use each style, and combinations of the two.

The other issue is of more theoretical interest. When an agent makes
a query (which is logically the same as describing a topic on which it
will receive tuples in the subscription oriented architecture) then, as has
been described, the response essentially carries with it the topology of
the space in which the response is embedded. Realistic complex systems
are likely to either:

1. make multiple queries each of which generates a response in a differ-
ent space or

2. receive responses to a single query with varying topologies (such as
near and distant birds in a bird flocking example)

Future work will look at the issues relating to how the responses in dif-
ferent topologies are combined, if that is feasible, and what that implies
for more complicated complex systems which more closely represent the
details of the real world.

Environment Orientation 81

8 Conclusions

The agents in real world complex systems do not directly interact via
some “action at a distance”; they interact through the mechanisms me-
diated by a complicated environment in which they are all embedded.
Producing complex systems simulations in an environment oriented man-
ner uses environment implementations in which many complicated func-
tions of the agents are embedded. The use of the environment oriented
approach to complex systems simulation promises to raise the level of
abstraction in simulation development. This approach allows design to
avoid many details related to deadlock and communication. Other issues
become apparent, such as how to handle the varying resolution and ac-
curacy inherent in a typical complex real world situation. These issues
can potentially be represented as a set of topologies in which real work
values are embedded.

8.1 Acknowledgements

The work described here is part of the CoSMoS2 project, funded by
EPSRC grant EP/E053505/1 and a Microsoft Research Europe PhD
studentship.

References

[1] P. Andrews, A. Sampson, J. Bjørndalen, S. Stepney, J. Timmis, D. War-
ren, and P. Welch. Investigating patterns for the process-oriented mod-
elling and simulation of space in complex systems. In Artificial Life XI,
pages 17–24. MIT Press, 2008.

[2] Fred R. M. Barnes, Peter H. Welch, and Adam T. Sampson. Barrier
synchronisation for occam-pi. In Hamid R. Arabnia, editor, PDPTA,
pages 173–179. CSREA Press, 2005.

[3] J. L. Deneubourg and S. Goss. Collective patterns and decision-making.
Ethology, Ecology & Evolution, 1:295–311, 1989.

[4] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. ACM Trans. Inter. Tech., 2(2):115–150, May 2002.

[5] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles,
Patterns and Practice. Addison-Wesley, 1999.

[6] David Gelernter. Generative communication in Linda. ACM Trans. Pro-
gram. Lang. Syst., 7(1):80–112, January 1985.

[7] Jean-Louis Giavitto and Olivier Michel. Data structure as topological
spaces. In Proceedings of the 3rd International Conference on Unconven-
tional Models of Computation, pages 137–150, 2002.

2 http://www.cosmos-research.org

82 Hoverd and Stepney

[8] IBM. The TSpaces vision. http://www.almaden.ibm.com/cs/TSpaces/

html/Vision.html, accessed on 6th May, 2009.
[9] ISO. ISO/IEC 9075-1:1999: Information technology — Database lan-

guages — SQL — Part 1: Framework (SQL/Framework). 1999.
[10] ISO. ISO/IEC 9075-2:1999: Information technology — Database lan-

guages — SQL — Part 2: Foundation (SQL/Foundation). 1999.
[11] Jini. The community resource for Jini technology. http://www.jini.org,

accessed on 6th May, 2009.
[12] J. M. R. Martin and P. H. Welch. A design strategy for deadlock-free

concurrent systems. Transputer Communications, 3(4), 1997.
[13] Robin Milner. The Space and Motion of Communicating Agents. CUP,

2009.
[14] MySQL. Open source database. http://www.mysql.com, accessed on 6th

May, 2009.
[15] Sun Developer Network. Java Message Service (JMS). http://java.

sun.com/products/jms/, accessed on 6th May, 2009.
[16] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres.

Sci. Comput. Program., 41(3):277–294, 2001.
[17] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral

model. Computer Graphics, 21(4):25–34, 1987.
[18] Masatoshi Seki. dRuby and Rinda: Implementation and Application of

Distributed Ruby and its Parallel Coordination Mechanism. International
Journal of Parallel Programming, 37(1):37–57, 2009.

[19] Susan Stepney. Embodiment. In Darren Flower and Jon Timmis, editors,
In Silico Immunology, chapter 12, pages 265–288. Springer, 2007.

[20] Peter H. Welch and Fred R. M. Barnes. Communicating mobile processes.
In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, 25 Years
Communicating Sequential Processes, volume 3525 of LNCS, pages 175–
210. Springer, 2004.

[21] Wikipedia. Client server architecture. http://en.wikipedia.org/wiki/
Client-server, accessed on 18th June, 2009.

[22] Wikipedia. Facade pattern. http://en.wikipedia.org/wiki/

Facadepattern, accessed on 6th May, 2009.
[23] Wikipedia. Message oriented middleware. http://en.wikipedia.org/

wiki/MessageOrientedMiddleware, accessed on 6th May, 2009.
[24] Wikipedia. Multitier architecture. http://en.wikipedia.org/wiki/

Multitierarchitecture, accessed on 18th June, 2009.
[25] Wikipedia. Publish/subscribe. http://en.wikipedia.org/wiki/

Publish/subscribe, accessed on 6th May, 2009.
[26] Wikipedia. Transaction processing. http://en.wikipedia.org/wiki/

Transactionprocessing, accessed on 18th June, 2009.

A Framework Proposition for

Cellular Locality of Dictyostelium

Modelled in π-Calculus

Anthony Nash and Sara Kalvala

Department of Computer Science, The University of Warwick, Coventry, UK,
Anthony.Nash@warwick.ac.uk

Abstract. The aim of this paper is to review the use of process
calculi as a means of representing various biochemical networks
and processes. Recent literature, ideas and formulated systems
are explored in conjunction with their respective biological ex-
amples. We then show how π-Calculus can be used to model
various aspects of cell locality in a cellular automaton, in ad-
dition to the signal transduction responsible for Dictyostelium
discoideum aggregation.

1 Introduction

Biochemical networks are built from a collection of biochemical signals,
which in turn are formed from organised groups of cells. Within each cell
commands carried out are the product of molecular interactions such as
protein kinase, gene transcription and translation and the release of cal-
cium. Such a system is so complex, scientists are finding it very hard to
replicate these processes without resorting to a significant level of ab-
straction. Most cases of biological simulation require the extrapolation
of ordinary differential equations. Yet, the idea that differential equa-
tions only provide a very rigid set of results [14] allows room to explore
biological systems from the perspective of formal language theory. By
expressing every component of a biological network as a process we find
an interesting set of parallels between biological networks and process
calculi.

We use the soil-dwelling amoeba D. discoideum as our biological sub-
ject of interest, and from it propose a framework in which to model the
chemotactic aggregation of the cells. The framework is two-fold; firstly,
by representing D. discoideum as a population within a discrete two-
dimensional cellular automaton it will be possible to experiment with

84 Nash and Kalvala

cell locality by making modifications to the π-Calculus representing the
underlying grid; secondly, the cells are driven by π-Calculus structured
chemical activation and chemical transport. Cell behaviour can be al-
tered by making modifications to the underlying π-Calculus: for example,
modifying required levels of internal cAMP (Cyclic adenosine monophos-
phate) to activate PKA. We must note that a CA (Cellular Automaton)
system’s behaviour is not dictated by its rules but rather by the amalga-
mation of cell locality and cell rules across the system as a whole. Such
behaviour can be seen throughout biology; for example, the global effects
of cAMP waves through D. discoideum.

This paper’s biological representative, D. discoideum, is a thoroughly
studied amoeba with studies starting as early as the 1940s and math-
ematical models making their way into publications by the 1970s. We
propose the use of π-Calculus in an attempt to structure transmembrane
signals and cAMP waves across a two-dimensional cellular automaton
space, leading to the expected wave-like aggregations. π-Calculus will
lead to a simplified framework, where biochemical values can be modi-
fied to reveal emergent behaviour of aggregating cells.

The paper will follow with an in-depth description on D. discoideum.
This is immediately followed by a short investigation into some of the
ODE (ordinary differential equation) models. We then explore a select
sample of how process calculi have made their way into biology. Finally,
we include a proposal and discussion on modelling given aspects of D.
discoideum using π-Calculus and how this formal language can be used
to implement such a model in a discrete cellular automaton environment.

2 Dictyostelium discoideum

D. discoideum is a predatory soil-dwelling amoeba, which collectively
gathers to form a slime mold. Each amoeba feeds on decaying matter
and a variety of micro-organisms; for example, E. coli. The amoeba is
typically 10µm in diameter. Due to the number of observable biological
processes throughout its complete life cycle, the amoeba has acquired a
history of extensive study [2].

The structure of its cellular makeup suggests features common to
both plants and animals. It contains cellulose, the most prolific organic
compound found on the planet, and develops spores to further its sur-
vivability.

As the structure of the amoeba is similar to animal cells, movement
is achieved through a biological process known as morphogenesis. Upon
receiving a signal, whether it is a hormone, a toxic chemical, or by me-

A π-Calculus Framework for Locality of Dictyostelium 85

chanical stresses, a protrusion is extended and through contraction the
body of the cell moves forward. Specifically, D. discoideum uses the de-
tection of the chemical cAMP to cause a cytoplasmic release of calcium,
causing the extension of a pseudopod in the positive direction of the
chemical gradient.

There are three stages to the life cycle of the amoeba. The first stage
is a vegetative cycle where the amoeba lives a solitary existence feed-
ing on bacteria. Whilst there is an abundant quantity of food D. dis-
coideum behaves on an individual basis, performing unicellular repro-
duction. Feeding occurs through phagocytosis, a process by which the
organism engulfs the food source with a membrane.

The second stage of the life cycle begins as soon as the cells begin
to starve. This is commonly known as the chemotaxis and aggregation
stage. Starvation leads to a number of cells forming into pacemaker cells,
periodically releasing cAMP [8]. Neighbouring cells detect the release of
cAMP and move towards the source [9] whilst excreting cAMP them-
selves. This causes the cells to form into aggregation waves. Aggregation
can involve up to 100,000 cells with a combined circumference of 20mm.
The cAMP signal does not diffuse far from its originating source; it is
destroyed within 57µm (approximately equal to six cell diameters) by
arcasinase (a phosphodiesterase enzyme) also produced by the starving
amoeba. The global effect of cAMP synthesis and detection causes the
amoebas to congregate into a multicellular tipped aggregate.

Figure 1 (taken from [11]) illustrates part of the stage of cAMP trans-
duction, creation and oscillatory control. The cAMP secreted by pace-
maker cells acts as a ligand for D. discoideum CAR1 extracellular mem-
brane receptors. CAR1 is a cell receptor located on the outer-surface of
the cell membrane (extracellular). A cell receptor is responsible for ac-
cepting ligands such as amino acids and messenger molecules. Once the
receptor has found a matching ligand it starts the signal downstream
process by activating ERK2, a protein kinase intracellular signalling
molecule.

ERK2 has two primary roles. The first, to continue suppressing the
signal pathway component REG A until ERK2 itself is suppressed, and
the second is to relay the incoming signal to the component ACA. ACA
secretes cAMP back into the environment along with PDE (phospho-
diesterase); a chemical compound used to degenerate cAMP. It also in-
creases levels of internal cAMP to trigger activation of PKA (protein
kinase A) after a given threshold is reached. PKA activates three bio-
chemical processes; firstly the execution of gene expression leading to the
release of calcium and ultimately the movement of the cell, secondly the
disabling of ERK2, which in itself leads to the activation of REGA and

86 Nash and Kalvala

Fig. 1. The oscillating feedback loop of external and internal cAMP production
and degeneration as presented in [11].

as such internal cAMP is hydrolyzed to lower internal levels, thirdly,
the membrane receptor CAR1’s ability to accept cAMP ligands is re-
duced. As [11] makes clear, the cAMP transduction sequence creates an
oscillating feedback loop.

Gradually the cellular mass forms a slug, where the tip is constructed
from prestalk cells and the body from prespore cells, ready to begin
forming a standing slug aggregate. The slug is typically made from up
to 100,000 cells (one in five are prespore, the others prestalk) and behaves
as a single organism capable of both phototaxis and thermotaxis. The
thermotaxis is the slug’s ability to detect and move along a temperature
gradient and phototaxis is the movement along a light gradient. It is
enclosed in a sheath of muco-polysaccharide and cellulose and its tip
is considered the control centre for specialised global development. In
the third and final stage, as the slug settles into place, the prestalk
and prespore cells switch place, with the prespore cells pushing past the
prestalk to form a bulbous tip and the prestalk retreating back to form
the stalk of the fruiting body allowing spore cells to disperse and become
a new amoeba.

A π-Calculus Framework for Locality of Dictyostelium 87

2.1 A brief summary of D. discoideum modelled using ODE

Although the proposed approach to modelling D. discoideum will be
based on π-Calculus we will briefly outline some of the work involving
modelling the amoeba using ordinary differential equations.

The mathematical models summarised by the publications of Dallon,
Othmer, and Tang [7, 15, 20, 21] express the behaviour of chemotaxis via
non-linear ODEs. The majority of publications on D. discoideum have
used these equations to model cellular behaviour. By relying on their
accuracy, biologists have been able to concentrate on various other areas
of the D. discoideum life cycle such as cell differentiation [24]. In [24]
we see that the transformation from a hemispherical mound into an
elongated slug results from cellular movement in response to cAMP.

ODE models have been successful in capturing a significant set of
cellular and extracellular behaviour in a population of D. discoideum.
Not only should a model be concerned with biochemical reactions, it also
needs take into account the environmental physics [15]. These physical
properties include cell-cell and cell-substrate adhesion, interaction of cells
through locomotive forces and resistance to cellular deformation.

Using a previously defined set of ODEs [7], the publication [15] looks
at representing individual cells as deformable viscoelastic ellipsoids so as
to implement a system that generates active forces, interacts via surface
molecules, and can detect and respond to chemotactic signals. In the
literature referenced in this paper the researchers spend significant time
experimenting with models of cell locomotive forces to reveal the effects
of movement speed on the formation of aggregate streams. The effects
of using previously defined mathematical models in addition to physical
forces can be seen in figure 2.

cAMP cellular threshold dynamics have been expressed with suc-
cess using the FitzHugh-Nagum model [24]. The implementation pro-
vides a means of regulating the required cAMP threshold in the cell
to activate chemotaxis before the variables oscillate back to a resting
state [10]. The model helps identify the shape and dynamics of the D.
discoideum mound through a process of cell sorting and differentiation.

3 Process-algebraic modelling of D. discoideum

Process calculi in biology can be seen as a shift in paradigm from the
traditional numerically-intensive (and usually non-linear) ODE models
to a more structured ontology. Process calculi’s ability to model vast net-
works of parallel units lends itself very well to studying mass parallelism
found in nature. Other discrete parallel distributed models exhibit the

88 Nash and Kalvala

Fig. 2. Samples taken from [15], demonstrating the aggregation of cells into
streams. As the system evolves over time, cells begin to clump together whilst
those outside of relaying cAMP signals remain isolated.

same benefits; for example, Wolfram’s work on cellular automata [25]
documents this very well.

Many biological systems involve cyclic message-based operations; for
example, oscillation of cAMP in D. discoideum [5]. For this reason, a
variation on stochastic π-Calculus using graphical representation of bio-
logical cycles has been successfully implemented to model the behaviour
of a MAPK signalling cascade [17].

Not all biological systems react in a deterministic manner, for exam-
ple, parts of an immune system behave on conditional probabilities via
the activation rate of lymphocyte according to the balance of cytokine
to antigens in the blood stream [14]. This has been expressed using the
probabilistic process calculi WSCCS [23].

A system of three genes uses negative feedback to mutually repress
each other [18] has been successfully modelled in stochastic π-Calculus
and implemented on SPiM (Stochastic Pi-Machine) [16]. SPiM uses a
variation on the Gillespie algorithm to select reactions proportional to
chemical reaction rates. In addition to SPiM, similar process calculus
implementations such as BioSPI [19] have been used to model biological
systems. A further modelling tool based on a process calculi is PEPA
(Performance Evaluation Process Algebra), it is a stochastic formal lan-
guage which allows the modelling of distributed systems. Finally, work

A π-Calculus Framework for Locality of Dictyostelium 89

in [6] has shown great success in running simulations of ERK signalling
pathways.

Moving away from D. discoideum we see how stochastic process cal-
culi is being used to create formal model representations of neurological
processes [3, 4]. The formal models enjoy the freedom of direct implemen-
tation from mathematical notation straight into SPiM. The publications
focus on particular neuron areas and synaptic processes; for example, [3]
explores a process calculi representation of a presynaptic terminal along
with a discussion on facilitation and depression.

It is evident from the literature reviewed on process calculi along with
the biological examples how the modularity and dynamic capabilities of
process calculus would warrant further study by biologists and computer
scientists.

4 A proposed model framework

The following two sections give a brief example of π-Calculus modelling
cAMP regulation via oscillating signal transduction biochemical reac-
tions along with basic CA neighbourhood interactions. Please refer to
appendix A for a short description of the syntax involved.

We begin our description of both intra- and inter-cellular parts of the
model by first defining the names used throughout the formal model by
the set notation in equation 1. Note, within the model a cell refers to a
location in an environment/phase space. A phase space cell can either
contain a chemical, a biological cell (referred to as D. discoideum) or can
be empty.

N = {a,c,absorb,release,activateACA,suppressERK,
releasePDE,releaseCAMP,camplevel,campthreshold,cellTransition}

(1)

Table 1 gives a description to each element in the set N from equa-
tion 1.

4.1 Intra-cellular communication

The following section describes a few of the basic π-Calculus processes
to modularise a single D. discoideum internal signal network occupy-
ing a single phase space cell. Our treatment broadly follows the other
formalisations described in section 3.

90 Nash and Kalvala

Set member Description

a A channel used to bind together communication between the
process CAR1 and the process CAMP. The two processes are
then able to move to two different states simultaneously.

c A channel used to bind together the processes ACA and PKA.
By activating this channel, suppressERK channel is executed,
consequently moving to a state containing the REGA process.

absorb A channel which allows the CAMP process to behave as
ERKPathway and the CAR1 process to behave as itself, i.e.,
CAR1

τ→ CAR1.

release A channel which upon execution allows the CAMP ligand to
disengage from the CAR1 receptor.

activateACA This channel facilities the ERK2 process binding with the
ACA process.

suppressERK Allows the transition to a REGA process state by the ACA
process binding with ERK2.

releasePDE A dummy process used to illustrate a possible state transi-
tion facilitating interaction with the surrounding environmen-
tal cells via the release of the chemical PDE.

releaseCAMP A dummy process used to illustrate a possible state transi-
tion facilitating interaction with the surrounding environmen-
tal cells via the release of the chemical cAMP.

camplevel An arbitrary π-Calculus name representing the internal level
of cAMP.

campthreshold An arbitrary π-Calculus name representing the quantity of
cAMP required before PKA becomes excited.

campthreshold An additional mechanism used to illustrate the action of trans-
ferring a chemical, signal or biological cell across two neigh-
bouring phase cells.

Table 1. A list of π-Calculus names comprising of arbitrary names; e.g.,
camplevel and campthreshold, and actions; e.g., absorb and release. Actions
a and c are used as channels to pass a set of channels between communicating
processes. This is a strong feature of π-Calculus

A π-Calculus Framework for Locality of Dictyostelium 91

The D. discoideum signal transduction is made up from a number
of processes each of which is described below (a description on the indi-
vidual biological components can be found under section 2). The com-
position of processes can be extended to include greater detail on the
operations behind a D. discoideum amoeba (see section 5 for further
work).

LigandBond
def
= {νa, νabsorb, νrelease} (CAMP|CAR1) (2)

CAMP
def
= a (absorb,release) .

(
absorb.ERKPathway + release.CAMP

)
(3)

CAR1
def
= a (absorb,release) . (absorb.CAR1 + release.CAR1) (4)

The arbitrary parallel composition of the two processes CAR1 and
CAMP in equation 2, represents the joining of a ligand to a cell receptor.
The binding of the two processes in equation 2 can be expressed through
the mutual channel a, which facilitates execution by giving each process
a choice of being in either one of two states. The first choice, absorb will
cause the state to transform from LigandBond to a parallel composition
of ERKPathway and CAR1. The labelled state transition notation for
this modification of state is LigandBond τ→ CAR1|ERKPathway. The
second choice, release causes the process to return to its original state.

ERKPathway
def
= {νactivateACA, νsuppressERK, νlockpathway,

νunlockpathway, νc}
(ERK2|Pathway|PKA|ACA)

(5)

The ERKPathway process can be decomposed into four components,
each of which have mechanisms in the form of private channels to bind al-
lowing internal communication between processes. The Pathway process
in equation 6 allows a semaphore lock on the complete ERK2 pathway,
i.e., from activation of ERK2 up to the suppressing of the CAR1 and
ERK2 components. It works by preventing an existing ERK2 process
from reactivating the ACA process. This is only visible after a complete
run of the ERKPathway process along with another binding of CAMP.

Pathway
def
= lockpathway.unlockpathway.0 (6)

92 Nash and Kalvala

The ERK2 process immediately locks the process flow by using the
lockpathway from equation 6. Having bound with the ACA process via
the new operation activateACA, ERK2 is able to activate the ACA pro-
cess. On the other hand, towards the end of a cycle the ERK2 process
can be suppressed via the suppressERK channel, which in turn moves to
state REGA.

ERK2
def
= lockpathway.

(
activateACA.0|suppressERK.REGA

)
(7)

ACA as seen in equation 8 has the ability to move across a number of
states. The arbitrary channels releasePDE and releaseCAMP are respon-
sible for binding with the external cellular environment. This process has
yet to be implemented and will be featured in future work (please see
section 5).

One of the possible states which the parallel composition can trans-
form to is the binding of the ACA process over a channel c. This is only
possible if the internalcamp reaches the thresholdcamp value. Internal
quantities of cAMP can be maintained via a basic counting mechanism.

ACA
def
= {νreleasePDE, νreleaseCAMP}

activateACA.
(
releasePDE.0|releaseCAMP.0

|if internalcamp = campthreshold then c.ACA)

(8)

Once a significant quantity of cAMP has built up within the cell,
PKA suppresses the ERK pathway by communicating with the ERK2
process to move to a REGA state via the suppressERK channel. The
removal of cAMP from the inside of the D. discoideum cell would require
an additional mechanism, along with the degeneration of cAMP in the
external cellular environment from the collision of the PDE chemical.

PKA
def
= {νgeneExpression} c.

(
suppressERK.PKA|geneExpression.0

)
(9)

geneExpression suggests an arbitrary channel allowing further decom-
position of D. discoideum cell to facilitate the intake of CA2+ causing
cellular movement. The process geneExpression.0 evolves to 0, which
suggests that only one gene expression transition per activation of PKA
is possible until the next successful build up of cAMP.

REGA
def
= if camplevel 6= campthreshold then unlockpathway.0 (10)

A π-Calculus Framework for Locality of Dictyostelium 93

�� ��{νabsorb, νrelease}Ligand

?
τ 6τ�� ��((absorb.ERKPathway + release.CAMP) | (absorb.CAR1 + release.CAR1))

?
τ�� ��{νactivateACA, νlockpathway} (ERK2|Pathway|PKA|ACA|CAR1)

?
τ�� ��(activateACA.0|supressERK.REGA|ACA) |unlockpathway.0|PKA

?
τ�� ��supressERK.REGA|unlockpathway.0|PKA|releasePDE.0|releaseCAMP.0

?
releasePDE

?

releaseCAMP

�
�

�
�

supressERK.REGA|unlockpathway.0

|PKA|0|releaseCAMP.0

�
�

�
�

supressERK.REGA|unlockpathway.0

|PKA|releasePDE.0|0

Fig. 3. A brief example of a transition state diagram illustrating some of the
few initial steps involved in the D. discoideum signal transduction cycle. Be-
tween states is a labeled transition, a τ indicates an action silent only to those
processes directly involved.

94 Nash and Kalvala

4.2 Inter-cellular communication and CA neighbourhood

The π-Calculus model is used to represent a discrete cellular automaton
environment. Cells (as mentioned in section 4, unless explicitly defined,
refers to a single space in the environment, not a biological entity) inter-
act with their neighbours according to defined rules and a given neigh-
bourhood structure. Cell-to-cell signals are biochemical, where each sig-
nal occupies a single cell and travels across the CA space in a motion
similar to in-vivo chemical signals (please refer to section 5 for additional
work).

Γ =

 (x-1,y-1), (x,y-1), (x+1,y-1),
(x-1,y), (x+1,y),
(x-1,y+1), (x,y+1), (x+1,y+1)

 (11)

The neighbourhood Γ (illustrated in figure 4) required to detect the
presence of cAMP is equivalent to the Moore neighbourhood. This re-
flects the notation that the D. discoideum amoeba is unable to sense a
cAMP wave until the cAMP ligand binds to the CAR1 transmembrane
receptor. The degeneration of cAMP by a phosphodiesterase uses the
same neighbourhood, only reacting when the chemicals cAMP and PDE
meet.

A single neighbouring cell is defined as

NCell(x,y)
def
= cellTransition (state) .NCell(x,y) (12)

The cellTransition is an arbitrary channel which allows communication
between a given cell and its neighbours. Any number of additional chan-
nels can be added to cater for multiple signals from the same cell. Alter-
natively, it would be possible to send multiple names down a single chan-
nel with the polyadic π-Calculus [12]. The ordered pair (x, y) refers to the
physical location within the neighbourhood. Neighbourhood coordinates
of the current cell are defined by the set Γ . A pictorial representation
can be seen in figure 4.

The centre cell surrounded by its neighbours will be referred to as
the current cell; this can be seen in figure 4. Execution of a cell’s neigh-
bourhood occurs in parallel; this is defined as

Neighbours
def
=

max−n∏
l∈Γ

cellTransitionl (state) .NCelll (13)

where max-n refers to the last of the cell’s neighbours.

A π-Calculus Framework for Locality of Dictyostelium 95

�
�

�
�CCell

@
@

�
�

�
�

@
@

. . .

. . .

. . .

�
�

�
�NCell1 c1

�
�

�
�NCellici

�
�

�
�NCellk

ck �
�

�
�NCellj

cj

Fig. 4. A brief example of the cellular automaton environment. The centre
environment cell can contain a single D. discoideum cell. Note how the layout
of the environment can take the form of a neighbourhood from lattice gas or
traditional cellular automata. This implies that the neighbourhood set Γ can
also change according to the neighbourhood structure.

5 Conclusion

D. discoideum has been the subject of a lot of research by computer
scientists over the years, but much of it has concentrated on either the
formation of aggregates or the signalling pathways but rarely has there
been a systematic attempt to combine both facets. In this paper we
present our attempt at modelling the intracellular cAMP oscillation in π-
Calculus and apply this formalisation to explain how the quorum sensing
between cells can be achieved, thus capturing the complex, multi-scale
characteristics of the system. At the moment each of the two aspects
are represented in a simple way, but we hope to develop more detailed
models, all the time mapping intra- and inter-cellular phenomena.

The core of the representation is the use of a cellular automaton grid
to anchor the population of cells and capture the neighbourhood over
which amoeba influence each other and, more importantly, the associa-
tion of π-Calculus formulae with each location. We do not yet capture
space in a very realistic way, or the movement of amoeba from one loca-
tion to another. We plan to eventually move to a more sophisticated
representation, such as lattice-gas cellular automata. The π-Calculus
abstract representation of biological processes creates an open model
allowing for further details in the mechanics behind D. discoideum. For
example; the implementation of gene expression, which ultimately leads

96 Nash and Kalvala

to the intake of calcium ions to encourage the amoeba to move (see
section 2).

Once a sophisticated π-Calculus model has been established we in-
tend to implement the framework on a high-throughput Condor ma-
chine [22]. Unlike [3] the authors of this paper intend to building their
own software process calculi interpreter rather than using existing sys-
tems such as SPiM.

References

[1] J. Bergstra, A. A, Ponse, and Scott A. Smolka, editors. Handbook of
Process Algebra. Elsevier Science Inc., New York, NY, USA, 2001.

[2] John Tyler Bonner. Lives of a Biologist: Adventures in a Century of
Extraordinary Science. Harvard University Press, 2002.

[3] Andrea Bracciali, Marcello Brunelli, Enrico Cataldo, and Pierpaolo
Degano. Expressive models for synaptic plasticity. Computational Meth-
ods in Systems Biology, 4695:152–167, 2007.

[4] Andrea Bracciali, Marcello Brunelli, Enrico Cataldo, and Pierpaolo
Degano. Stochastic models for the in silico simulation of synaptic pro-
cesses. BMC Bioinformatics, 9, 2008.

[5] Joseph A. Brzostowski and Alan R. Kimmel. Nonadaptive regulation
of ERK2 in Dictyostelium: Implications for mechanisms of cAMP relay.
Molecular Biology of the Cell, 17:4220–4227, October 2006.

[6] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP
on the ERK signalling pathway using the stochastic process algebra
PEPA. Lecture Notes in Computer Science, 4230:1–23, 2006.

[7] J. C. Dallon and H. G. Othmer. A Discrete Cell Model with Adaptive
Signalling for Aggregation of Dictyostelium discoideum. Royal Society of
London Philosophical Transactions Series B, 352:391–417, March 1997.

[8] P. N. Devreotes and S. H Zigmond. Chemotaxis in eukaryotic cells: A
focus on leukocytes and Dictyostelium. Cell Biology, 4:649–686, 1988.

[9] Merkl R. Fisher, P. R. and Gerisch G. Quantitative analysis of cell
motility and chemotaxis in Dictyostelium discoideum by using an image
processing system and a novel chemotaxis chamber providing stationary
chemical gradients. Journal of Cell Biology, 108:973–984, 1989.

[10] Peter Grindrod. The theory and applications of reaction-diffusion equa-
tions : patterns and waves. Oxford University Press, 1996.

[11] Michael T. Laub and William F Loomis. A molecular network that pro-
duces spontaneous oscillations in excitable cells of Dictyostelium. Molec-
ular Biology of the Cell, 9:3521–3532, December 1998.

[12] R. Milner. The polyadic pi-calculus: a tutorial, pages 203–246. Springer-
Verlag, 1993.

[13] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part i. I and II. Information and Computation, 100, 1989.

A π-Calculus Framework for Locality of Dictyostelium 97

[14] Ral Monroy. A process algebra model of the immune system. Knowledge-
Based Intelligent Information and Engineering Systems, pages 526–533,
2004.

[15] E. Palsson and H. G. Othmer. A model for individual and collective
cell movement in Dictyostelium discoideum. Proceedings of the National
Academy of Science, 97:10448–10453, September 2000.

[16] A Phillips. The stochastic pi-machine, 2006.

[17] Andrew Phillips and Luca Cardelli. A graphical representation for the
stochastic pi-calculus. Bioconcur’05, August 2005.

[18] Andrew Phillips and Luca Cardelli. Efficient, correct simulation of bio-
logical processes in the stochastic pi-calculus. Computational Methods in
Systems Biology, pages 184–199, 2007.

[19] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation
of biochemical processes using the pi-calculus process algebra. Pac Symp
Biocomput, pages 459–470, 2001.

[20] Y. Tang and H. G. Othmer. A G protein-based model of adaptation in
Dictyostelium discoideum. Math. Biosci, 120:25–76, 1994.

[21] Y. Tang, P. Schaap, and H. G. Othmer. A model for pattern formation
in Dictyostelium discoideum. Differentiation, 61:141–141, 1996.

[22] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-
puting in practice: the condor experience: Research articles. Concurr.
Comput. : Pract. Exper., 17(2-4):323–356, 2005.

[23] Chris Tofts. Processes with probabilities, priority and time. Formal
Aspects of Computing, 6:536–564.

[24] B Vasiev and C J Weijer. Modeling chemotactic cell sorting during Dic-
tyostelium discoideum mound formation. Biophysical Journal, 76:595–
605, February 1999.

[25] Stephen Wolfram. A New Kind of Science. Wolfram Media, January
2002.

A Appendix - π-Calculus

The following syntax is a short extract from a complete list of π-Calculus
syntax [13]. A companion set of examples are also available [13]. We
would also like to bring to the reader’s attention [1] as a good source on π-
Calculus and as an introduction to a number of π-Calculus adaptations.

A.1 Process Definition

The set of processes can be defined as:

98 Nash and Kalvala

P ::=0
|x̄y.P
|x(y).P
|τ.P
|(x)P
| [x = y]P
|P |Q
|P +Q

|A (y1, ..., yn)

(14)

A.2 π-Calculus actions

The following gives a short incomplete list of π-Calculus actions. Please
note that we have used a slightly different syntax to help define an output
channel. Rather than āx to denote a name x to be sent over channel
a, we have surround x in brackets as such ā (x). This helps keep the
syntax clear due to the number of characters in some of the biological
channel/process names.

– τ silent prefix - the silent prefix of a process P written as τ.P executes
P with no visible action.

– x̄y free output - the free output of name y across channel x written
x̄y.P , outputs y before behaving as process P .

– x(z) bound input - this process receives a name which substitutes
over the place holder z across the channel x to then behave as P

{
w
x

}
.

Please see reference [13] for a detailed description on binding of
names and name substitution.

– P |Q composition - the parallel execution of processes P and Q if each
has an executable action prefix. Processes may act independently
or share a channel in which to communicate across. Reference [13]
contains a list of very clear examples of parallel communicate.

–
∑
i∈I Pi (finite index set I) process summation - behaves like one of

Pi. The binary equivalent is written as P1 + P2 where either P1 or
P2 executes.

– [x = y]P match - if an incoming name x is identical to the name
y then process P executes. On a similar note the mismatch oper-
ator [x 6= y]P executes P so long as the names x and y are not
equal. In combination sophisticated conditional statements can be
constructed.

A π-Calculus Framework for Locality of Dictyostelium 99

A.3 Rules of actions along with examples

The following list of equations state the transformation rules (rules of
inference) used throughout the framework proposal. A complete list of
rules along with further examples can be seen in [13].

Tau action

τ.P
τ→ P

(15)

Output action

x̄y.P
x̄y→ P

(16)

Input action

x(z).P
x(w)→ P

{
w
z

} (17)

Sum
P

α→ Ṕ

P +Q
α→ Ṕ

(18)

Match
P

α→ Ṕ

[x = y]P α→ Ṕ
(19)

Parallel
P

α→ Ṕ

P |Q α→ Ṕ |Q
bn (α) ∩ fn (Q) = 0 (20)

Communication
P

x̄y→ Ṕ Q
x(z)→ Q́

P |Q τ→ Ṕ |Q́
{
y
z

} (21)

Given a process P
def
= a.P, executing action a causes the process to

remain constant. In terms of a labelled state transition diagram P a→ P,
i.e., a process onto itself.

The next example demonstrates bound channels over parallel com-
position. Given the two processes P

def
= a.Ṕ and Q

def
= a.Q́, along with

the parallel composition {νa} (P|Q), the restricted name a implies that a
can only execute between the two processes P and Q. This would evolve
as {νa} (P|Q) τ→ {νa}

(
Ṕ|Q́

)
. The τ is a silent operator, only visible to

the processes directly involved.
Where as the parallel composition allows a given state trajectory to

maintain every state involved, each with a likelihood of evolving, sum-
mation evolves on a single state, and thus all other states involved in

100 Nash and Kalvala

the operation are removed. For example, given P
def
= a.Ṕ and Q

def
= b.Q́

summing them together to form P + Q provides two directions of state
evolution. The first, P + Q a→ Ṕ and the second, P + Q a→ Q́. Notice how
only the activated process continues on that given trajectory.

Equivalence Arguments for Complex

Systems Simulations – A Case-Study

Teodor Ghetiu1, Robert D. Alexander1, Paul S. Andrews1,
Fiona A. C. Polack1, and James Bown2

1 Dept of Computer Science, University of York, York, YO10 5DD, UK
{teodorg,rda,psa,fiona}@cs.york.ac.uk

2 University of Abertay, Dundee, UK
j.bown@abertay.ac.uk

Abstract. Complex systems are often simulated to provide a
basis for research or analysis. However, complex systems simu-
lation often fails to properly demonstrate that the constructed
simulation is an adequate tool to support investigation of the
system under study. To address this issue we adopt and adapt
argumentation techniques traditionally used for safety critical
systems (SCS). Here we present part of an on-going case-study
in which these techniques are used to demonstrate that two dif-
ferent implementations of a complex system simulation are ad-
equately equivalent. This is a first step in producing further
simulations of the system under study, which will be shown to
be valid models on which to explore particular ecological phe-
nomena.

1 Introduction

This paper presents part of a case study that is using a principled ap-
proach to computer simulation of a complex system. The work is part
of the CoSMoS project3, which is developing a general framework for
the simulation of complex systems using agent-based approaches. One
of our long-term goals is to argue the validity of complex systems sim-
ulations against domain models that capture an explicit expression of
scientific understanding. More generally, we want to present properly-
evidenced arguments that one model is an adequate representation of
another model, or a particular perspective on reality. Such arguments
form the basis for discussion between the simulators and the domain
experts, and capture the rationale for the simulation, in terms of both

3 http://www.cosmos-research.org

102 Ghetiu, Alexander, Andrews, Polack and Bown

the domain understanding of the science, and the engineering of the
simulation – see [2, 19] for further discussion. We believe the ability to
argue properties of a complex system simulation (such as equivalence
or validity) is an important element of CoSMoS and any other similar
approach.

In this case study, a first step is to re-engineer a simulation of intra-
specific plant variation [6]. The existing object-oriented simulation, in
C++, needs to be scaled-up to support the scientific research. Else-
where, we discuss the use of occam-π for efficient, process-oriented par-
allel agent-based simulation [17]. A number of recent complex systems
simulations [5, 23, 24, 29] have successfully used this programming lan-
guage. Here, we will ultimately exploit parallelisation to distribute the
occam-π simulations over a cluster of machines [22]. This will allow us
to simulate larger numbers and variations of plant, and a greater range
of environmental influences than is possible in a purely sequential imple-
mentation.

The re-engineering is supported by construction of an argument that
the occam-π simulation is adequately equivalent to the original C++ sim-
ulation. We call this an equivalence argument. The description of this
argument forms the main subject of this paper. The original C++ sim-
ulation was used in ecological research that has some credibility within
its research community, and through the equivalence argument we can
support a claim that our re-implementation should share that credibility.
Thus, our definition of adequate equivalence must make a case that the
simulations capture equivalent aspects of the scientific domain, rather
than simply presenting evidence of the technical equivalence of the two
programs. Our argument is acceptable if the scientists – here represented
by the person who has overseen the C++ simulation effort, James Bown
(referred to subsequently as the scientist) – accept the argument that
we have captured equivalent aspects of the scientific domain.

The paper continues with a brief introduction to argumentation tech-
niques and their relation to simulation validity, section 2. Section 3 then
describes the plant ecology case-study. Section 4 considers what ade-
quately equivalent means and shows how we can build an explicit, struc-
tured argument of adequate equivalence for the two simulations. Section
5 gives examples of the required evidence from the simulations, to sup-
port the argument presented in section 4. The paper concludes with a
discussion, section 6, conclusions and proposals for future work.

Equivalence Arguments for Complex Systems Simulations 103

2 Argumentation and Complex Systems Validity

Elsewhere, we summarise current scepticism about the ability of com-
puter simulations to adequately support scientific research (see [18], and
cited work, [7, 8, 15, 16, 30]). In [2, 19], we report on an immunological
case study undertaken in conjunction with immunologists, in which we
found that a systematic collection and exposure of assumptions, made
by the immunologists in relation to the scientific domain and by us as
modellers and simulation-engineers, helped the immunologists to under-
stand the value and limitations of our simulations. This understanding
meant that the immunologists could use even basic agent-based models
to test their understanding and guide their laboratory experiments; the
documented assumptions gave rise to new avenues of scientific research.
Here, we follow a suggestion in [19], and turn to conventional techniques
from critical systems engineering, to start the process of systematising
the use of arguments to capture and analyse evidence and assumptions.

In critical systems engineering, arguments are used to demonstrate
a case to regulators that a system has certain properties, most com-
monly properties related to safety. In critical systems, it is impossible
to absolutely demonstrate properties such as safety; instead evidence is
collected based on criteria such as use of accepted development practices,
software, system and sub-system testing, mechanical analysis, past ex-
perience or cumulative usage outcomes, and field trials. The evidence is
used to support an argument that the risk associated with the system
is As Low As Reasonably Practicable (ALARP), within the operational
environment for which the system is designed. A general approach to
constructing and documenting safety cases can be found in Kelly [10],
whose other published research includes a range of studies and applica-
tions of critical systems argumentation. For an example of safety case
creation for a – hypothetical – complex system, see [1].

2.1 Argumentation in Safety Critical Systems

Early safety-critical systems were unregulated, and were potentially gro-
ssly unsafe [12]. Consequent deaths and damage costs from, for instance,
industrial and vehicle accidents, led in time to regulation, part of which is
usually certification. Potentially-dangerous systems are allowed if there
is sufficient evidence that they would be safe to operate. For a long
time, evidence was based on process – “I have followed good engineering
practice, so my system is safe”. This approach is unsatisfactory in many
ways, not least of which is its limiting of engineers to use only approved
processes, thus inhibiting innovation.

104 Ghetiu, Alexander, Andrews, Polack and Bown

A significant improvement in safety management came with product-
based certification. Independent regulators are appointed, who set the
safety criteria that a system must meet, in terms of specific evidence
requirements. Developers collect evidence, and tie it together by means
of a structured argument known as a safety case. It is still possible to
cite an approved process as evidence, but this evidence is relegated to
an appropriately-subordinate role. A safety case is accepted or rejected
based on independent review of its arguments and evidence. Acceptabil-
ity is not an absolute, and can change over time, in the light of experience
or new evidence. This presents an important parallel to scientific inves-
tigation, particularly in biological domains, where the understanding of
complex natural systems is a developing area, with much debate and
many competing theories.

2.2 Summarising the Structure of an Argument: GSN

Safety cases were conventionally presented as free text, which is easy to
create and immediately readable, but hard to systematically review. As
Kelly [10] notes, not all safety engineers are gifted writers, and free text
safety cases are often ambiguous. Construction and review of cases is im-
proved if the structure of the argument and evidence can be summarised,
for example using the Goal Structuring Notation (GSN) [10, 31]. Exist-
ing examples and patterns for GSN are predominantly concerned with
safety cases.

GSN is a graphical way to express argument structures. A GSN dia-
gram shows a hierarchy from the top-level claim – a typical safety case
might seek to establish that The system is safe – down through sub-
claims that support that claim (e.g. The hazard ‘loss of temperature
control’ will not occur) and eventually to the evidence supporting those
claims (e.g. Software test results for component X show no faults). Any-
body using GSN is guided by the rules of the notation, which helps to
avoid gross errors of logic.

It is important to understand that GSN as a notation is of limited
value – it is the argumentation culture and the safety-case literature
that gives it its power in the safety field. Similarly, it would be a cul-
ture of argued validation that would be most important in addressing
the criticisms (noted above) of complex systems simulation for scientific
research.

Equivalence Arguments for Complex Systems Simulations 105

2.3 Adapting Argumentation for Scientific Simulation
Validity

When a computer simulation is used in a scientific study, the user of
a simulation needs to demonstrate the extent to which the computer
simulation matches reality (and other models). Traditionally, these ar-
guments have been, at best, informal discussions in papers and reports.
This causes many problems. Evidence or detail is omitted, making it diffi-
cult to assess the validity of simulation results. In an attempt at clarity,
many arguments are reduced to vacuous or partial claims. There is a
need to improve the quality and presentation of validation arguments;
GSN is an obvious candidate for constructing argument structures and
recording the evidence that supports (or could support) the argument.

Whilst there is a range of work on the validity in simulation, for
example [25, 26], we are not aware of any existing work on structured
arguments of computer simulation validity.

In safety analysis, the safety properties and the case for safety are
normally created and rehearsed by the developers before the argument
is constructed and represented in GSN. There are few specific argument
construction methods, and experience shows that, whilst a top-down ap-
proach is impractical because it requires oversight of the body of evidence
before the top-down structure can be identified, a bottom-up approach
risks losing sight of the point of the argument.

The argumentation that we require for simulations is somewhat dif-
ferent to safety case argumentation, in that we are constructing argu-
ments in parallel to simulation development, and can use the top-down
construction of the argument to guide development. Similarly, we do not
have a regulator dictating what is and is not acceptable evidence, but
instead we have a scientific collaborator who must be able to under-
stand and review our argument. In this paper, the goal is to demon-
strate that two simulations are adequately equivalent. Our argument
proceeds by analysing and recording what we will accept as evidence
of adequately equivalent. We then establish this evidence by systematic
analysis, recording the result as a GSN argument structure. First, we
briefly introduce the intra-specific plant variation domain and the exist-
ing C++ simulation.

3 The Example: Intra-specific Plant Variation
Simulations

The work presented in this paper is the first phase of a case study to
provide computer simulations to support extensions to the ecological

106 Ghetiu, Alexander, Andrews, Polack and Bown

research of Bown et al [6], based on their novel model of plant physiology
and interactions, based on physiological traits.

In [6], computer simulation is used to demonstrate that defining
plants in terms of a suitable set of traits yields results that are acceptable
to the ecological community, for example, the model produces species-
area and species-abundance distributions that have typical characteris-
tic statistical signatures (curves) [20]. However, the existing simulations
are limited in the number and complexity of components that can be
modelled, even if the implementation and platform were fully optimised,
because of the difficulty of distributing a C++ program.

3.1 Ecological Modelling and Plant Trait Models

Begon et al define ecology as the “scientific study of the distribution and
abundance of organisms and the interactions that determine distribution
and abundance” [4]. The “holy grail” of ecology [11] is to find general
rules that relate environmental conditions, species characteristics and
community composition.

To complement field experiments, ecologists attempt to capture ob-
servational patterns and behaviours in models. At one extreme, equation-
based models (EBMs) focuses on characteristics of the plant population
as a whole, while at the other extreme individual-based models (IBMs)
that allow for some of the individual variations within and between
species. IBM is the more appropriate technique for study of intra-specific
variation, and has the advantage that IBM individuals can map directly
to and from real plants, so biological understanding can be mechanisti-
cally reflected in computer models. However, a computer model cannot
hope to express all the characteristics of a real plant. A popular eco-
logical technique is to summarise the characteristics of a plant in terms
of numerical traits, with much ecological research to establish the most
appropriate traits and value-ranges. Traits typically characterise visible,
phenotypical properties such as shoot height, as well as ongoing bio-
logical processes such as water uptake capacity. A good model has rich
informational content built using traits whose validity is supported by
the direct mapping to biological data.

Ecological research has shown that trait trade-off is important in ex-
plaining the distribution and abundance of ecological communities [28].
Computer-based IBMs that model plants in terms of traits play a key role
in this research. However, the models do not always map well to research
goals, and it has been shown that the identification and representation
of traits has a significant influence on the simulation results [13, 21].

Equivalence Arguments for Complex Systems Simulations 107

Trait Description

Essential uptake Amount of resources that a plant needs for nor-
mal development without reproduction

Requested uptake Amount of resources that a plant will request to
support development and reproduction.

Spatial distribution of up-
take

Uptake capacity of a plant with respect to the
distance

Compartment partition Resource allocation ratio of structural compart-
ment to structural store

Structural store release
proportion

Proportion of structural store that can be re-
leased

Surplus store release pro-
portion

Proportion of surplus store resource that can be
released

Time dependent reproduc-
tion

Time needed before initiating reproduction.

Development dependent
reproduction

Resource level needed to initiate reproduction

Storage/fecundity relation Ratio of the resource available for reproduction
to the resources necessary for creating a seed

Seed dispersal pattern Radius of the area of local seed dispersal

Survival threshold Minimal resource level for plant survival

Survival assessment period Number of consecutive timesteps over which the
resources level can be below the survival thresh-
old before the plant dies

Table 1. Bown et al’s twelve plant traits [6]

3.2 The Computer Simulation of Bown et al

The intra-specific plant variation models of Bown et al [6] uses an IBM
based on a resource-centric physiological scheme [27]. The model allows
the study of the relationship between trait trade-off and the distribution
and abundance of species.

Firstly, Bown et al [6] establish twelve traits (table 1) that adequately
describe plant physiology. The plant species is described by a set of twelve
distributions, one for each of these traits. The distributions determine
the probability of each trait value across the set of plants, with individual
trait values assigned to achieve the species distribution. This approach
gives appropriate intra-specific variation.

In the model of Bown et al [6], a plant individual is modelled as
a phenotype and a genotype, figure 1. The phenotype consists of ap-
propriate representations of the resource storage and usage of a plant:
the structural compartment represents resources corresponding to the

108 Ghetiu, Alexander, Andrews, Polack and Bown

Trait 1 Trait 2 Trait 6Trait 5Trait 4Trait 3

Trait 12Trait 11Trait 10Trait 9Trait 8Trait 7

compartment

Surplus

store

Structural Structural

store

Age
Resourse

areauptake

Development

stage

Genotype

Phenotype

Fig. 1. Bown et al’s model of an individual plant [6]

plant’s fixed structure; the structural store holds resources that are used
for reproduction; and the surplus store represents any excess of resource-
uptake over the level essential to maintain the plant. In addition, the
phenotype records age and development stage. In the genotype, a value
is assigned to each of the twelve species traits, using a random sampling
of the trait distribution to introduce intra-specific variation. Trait value
distributions were obtained from field observations of the Rumex acetosa
plant species [3].

Four biological processes drive the generic life-cycle of a plant: re-
source uptake, resource allocation, reproduction and development, as
shown in figure 2. In the model, each plant takes up resources from the
environment and allocate it to the three resource components of the
phenotype. As resource is accumulated, the plant develops, which is de-
noted by incrementing the Development stage in the phenotype. Four of
the trait values are related to a plant’s development stage: spatial distri-
bution of uptake, development dependent reproduction, and the two uptake
traits.

There is an initial population of plants. When a plant reproduces
the distribution of seeds is controlled by the seed dispersal pattern trait.
A seed is only viable if it lands at a valid location that does not con-
tain a plant. In [6], reproduction is clonal, so a seed has the same trait
values as its (single) parent plant. The Reproduction process may be trig-
gered according to the trait value for time dependent reproduction or for
development dependent reproduction.

Equivalence Arguments for Complex Systems Simulations 109

Fig. 2. State machine model of the biological processes of Bown et al [6]:
ellipses represent the states of the plant associated with each biological process,
and arrows represent possible transitions between theses states; the plant is
created in the Resource uptake state and must be in the Resource allocation
state when its death is determined

The environment is represented by a single type of resource, which
is distributed evenly across its surface. The resource level has an upper
limit defined by a saturation level. The flow or resource to plants is con-
strained by release and replenishment rates, which specify the maximum
quantity of resource that can be released or added to the environment
at any time. In the computer simulation, the environment is modelled
on a two-dimensional grid. Bown et al [6] note that a cell represents an
area of approximately 100cm2, which, in the model, can be occupied by
at most one plant. The number of plants that take resource from a cell is
determined by the location of each plant and its root area, as represented
by the spatial distribution of uptake trait. Grid cells contain a resource
substrate, which is parametrised by the saturation level and the release
and replenishment rates.

A timestep in the simulation represents one day in the real-world.
Accordingly, the values that are used for parametrisation of the model
reflect the resource flow through a plant during one day [6].

In order to compare the trait-model intra-specific results to inter-
species distribution results, Bown et al [6] introduce 75 individual plants,
which are treated as representing 75 different species. Because the model
uses clonal reproduction, these 75 species either persist and increase in

110 Ghetiu, Alexander, Andrews, Polack and Bown

numbers, or die out. A simulation run lasted for 50 000 timesteps, which
corresponded to around 1250 generations of plants. The simulation was
run over different environment sizes (grids of 10×10 up to 50×50 cells)
to collect statistics on the relationship of the size of the environment to
the number of species co-existing (the species-area curve), and to the
abundance of each species (the species-abundance curve).

3.3 The C++ and occam-π Simulations

Bown et al [6] use a mechanistic model of plants through which com-
munity level processes can be studied. We have re-implemented the sim-
ulation in occam-π, but in order to use our simulation to scale up the
original experiments, we need to show that the new simulation is still
based on the same underlying biological model.

The C++ simulation code is sequential, running on a single thread of
execution. The model uses two passes per timestep to reduce sequential
bias. For example, for resource uptake, all plant demands are made in
the first pass, then, in a second pass, each plant receives a normalised
percentage of the quantity it requested – where the total demand on a
grid cell is more then the cell can release then each demand is reduced
accordingly. The limitation of running on a single thread constrains the
size of the environment and population that can be used in this simulator,
which cannot handle the real-world scale of several hectares containing
millions of plants.

A traditional re-engineering approach would create an abstract model
of the data and processing implemented in the C++ simulation, and then
re-develop this model in occam-π. This would, in theory at least, allow
formal refinement relations to be established between each implemen-
tation and the abstract model, and a formal proof of equivalence. In
practice, whilst model-driven engineering provides semi-formal transfor-
mation approaches to move between object-oriented models at different
levels of abstraction, the potential for formal refinement between ab-
stract models and object-oriented code is limited. Furthermore, having
extracted an abstract model from the object-oriented code, there is no
established way to refine this model into the process-oriented occam-π
language – occam-π is formally underpinned, but by CSP [9], an event-
driven formal language.

If a formal approach were to be found, it could establish a measure
of equivalence between the implementation codes of the two simulations,
but would not allow the re-engineered version to take full advantage
of the strengths of occam-π. Most significantly, here, the re-engineered
occam-π simulation can represent plants and locations as individual

Equivalence Arguments for Complex Systems Simulations 111

Context
Undeveloped Goal

(to be developed further)

Goal Solution Strategy

Justification

J

Fig. 3. GSN notations used in the equivalence argument: explanations are
given in the text description of the arguments that follow

occam-π processes, each having its own thread of control. The occam-
π processes communicate through channels through which data can be
passed. This gives a closer mapping between the implementation and the
biological reality than was evident in the C++ simulation.

4 A Structured Argument for Adequate
Equivalence

This section works through the argument of adequate equivalence con-
structed for the C++ and occam-π implementations. For simplicity, we
will refer to the C++ implementation as C, and the occam-π imple-
mentation as O. The argument is presented in GSN, using the standard
notations, given in figure 3. The meaning of these symbols in our work
is elucidated in the description of the argument that follows.

Note that the equivalence argument does not attempt to address the
rationale or engineering of the C++ simulation – this is an established
system that we cannot change. We do not compare the performance of
the two implementations, as the motive for the re-engineering is not any
immediate performance gain, but the distribution potential of the occam-
π simulation across computer grids [24], with the efficient management
of processes and events [32].

112 Ghetiu, Alexander, Andrews, Polack and Bown

4.1 The Top Goal

A GSN argument starts with a top goal. In figure 5, this is shown as
the rectangle labelled OCEquiv – O simulation is adequately equivalent to
C simulation. This is the claim that we want to make, and the whole
argument below is devoted to making that claim. In the diagram, lines
with solid arrowheads connect each goal to lower-level components that
together meet the goal.

A goal exists in a context. In figure 5, DefAdEq labels a context
node, here promising that a definition of adequately equivalent is given
elsewhere – in fact, the definition is given and explained in this section
of the paper.

It is hard to definitively define equivalence. Structures in different lan-
guages may be syntactically different but semantically equivalent, or vice
versa; we may have behavioural bi-similarity from different structures,
or, since we are modelling complex systems, we may observe different
results from similar initial conditions even within the same implemen-
tation. Despite this we need a definition of what we mean by adequate
equivalence in order to argue convincingly about it.

We therefore propose that:

the two simulations are adequately equivalent if they produce the
same results over the whole range of concern.

In common with most analyses of complex systems, same results can
be defined by statistical analysis – we run each simulation many times,
and collect the results. This gives a distribution for each result. We then
use an accepted statistical test (usually a non-parametric test that me-
dians and inter-quartile ranges represent the same distribution at some
confidence level) to determine whether the results can be considered
equivalent.

The range of concern is defined by ranges for parameters over which
the equivalence should hold. In the plant simulations, this relates to the
range of environment sizes and initial plant numbers. Note that, because
we cannot execute the C++ simulation on very large populations, we can
only consider equivalence within the range of this simulation. Instead,
we present direct comparisons of results within the range of the C++,
and theoretical arguments for the rest of the range. The comparison
of the results gives us high confidence within part of the range, while
the theoretical arguments give us some confidence, but at a lower level,
beyond that. This is represented figuratively in figure 4.

Note that the crucial factor in determining whether the definition
of adequately equivalent is sufficient is a discussion with the scientists.

Equivalence Arguments for Complex Systems Simulations 113

Top Goal
Argument and

Evidence

R
ange of

C
oncern Results

Theory

Fig. 4. Range of concern for arguing adequate equivalence: we wish to be con-
vinced over the whole range of both simulations (the Top Goal), but we can
only produce results evidence for part of the range; in the rest of the range we
rely on other forms of evidence

Thus, in our case study, we consult the scientist directly; since he con-
siders that our definition is sufficient, we can proceed. It is, of course,
possible that this initial acceptance may be reversed when the evidence
is complete and the whole argument presented – perhaps the scientist
can demonstrate that our non-parametric tests of statistical equivalence
are inappropriate, or our theoretical arguments are flawed, or perhaps
we find that there are bugs in one of the simulations that affect the
comparability of the results in other ways. The dialogue to establish the
definition and associated argument is essential in the establishment of
trust and understanding between simulators and scientists [2, 19].

4.2 Decomposing the Top Goal

Having agreed a top goal and the definition of the key terms that it uses,
we need to provide an argument that the goal is satisfied. In figure 5,
the top goal OCEquiv is met by following the ArgSciImplRes strategy. A
strategy in an argument explains the connection between a goal and its
sub-goals. Here, ArgSciImplRes states that we argue over three distinct
areas – the underlying science, the details of how the simulations are
implemented, and the actual results that they produce. The relationship
here is complementary – each child goal gives us some confidence that
the parent goal holds, and together, they give us adequate confidence
that the goal is met.

Note that the three-goal sub-argument in figure 5 is not an alter-
native definition of what it means for two simulations to be adequately

114 Ghetiu, Alexander, Andrews, Polack and Bown

OCEquiv

O simulation is

adequately equivalent to
C simulation

CDesc

Description of C

model

ArgSciImplRes

Argument over science,
implementation and

results

ORepScience

O represents the same

science as C

OSameResults

O gives same results

as C

DefAdEq

Definition of

'adequately equivalent'

is given in section 4.1

ODesc

Description of O
model

ORepImpAbs

O uses implementation
abstractions that are

adequately equivalent to those
of C

Fig. 5. Top level of the argument that the C++ (C) and occam-π (O) simula-
tions are adequately equivalent

equivalent. Rather, it is an approach to substantiating such a claim. We
are using the three-legged argument to support a claim that the results
will be the same across the whole range of concern.

The text in the GSN goal boxes is necessarily terse, and refers to con-
cepts that need to be defined, as in the above discussion of adequately
equivalent. It is hard to provide compelling contexts and definitive defi-
nitions. This is seen as a benefit, not a cost, of making structured argu-
ments – you get to see where your definitions are vague or unsatisfying.
(It is also much easier to see when another person’s arguments are weak.)

In GSN, an upward triangle beneath a context box means that it
has yet to be instantiated – it is a placeholder for concrete content that
is not yet available. In figure 5, the CDesc and ODesc context boxes
could be instantiated by a reference to the code of the simulations, to
common abstractions such as figure 2, above, or to summary text such
as the descriptions in section 3. The argument is not complete until this
instantiation is performed.

Equivalence Arguments for Complex Systems Simulations 115

ORepScience

O represents the same

science as C

CScience

Definition of 'C

science'

OAllBioAssumptions

O implements all the

biological assumptions used

in C

AssumptionTable

Table of

assumptions

showing how they

are implemented in

O

CAssumptions

List of assumptions

made by C

OSameAbs

O is designed using the

same abstractions of the

biology as were used for C

BioAbstractionTab

le

Table of

abstractions

showing how they

are used in the

design of O

CAbstractions

List of

abstractions made

by C

DefAbs

Definition of

'abstraction'

Fig. 6. Elaboration of the sub-goal to show that the simulations represent the
same science, from figure 5

Again, the point of GSN arguments is not to demonstrate with abso-
lute certainty that the top goal holds, but to demonstrate why the author
of the argument believes that it is holds. The reviewer can disagree with
the assumptions, strategy, and eventual evidence, and can challenge the
author to find a better argument. Here, for instance, our scientist may
dispute the strategy of arguing over three distinct areas, or may dispute
the totality of these complementary areas, and challenge the author to
make better justifications for its argument.

The three lowest-level goals shown in figure 5 are expanded in figures
6 to 8. Each of these argument fragments terminates in a circular solution
node. Solutions refer to the evidence that supports a claim. In very
simple arguments, evidence might directly support the top goal, but in
practice, such intermediate sub-goals and strategies are needed to create
a compelling argument. The following sections consider each of the three
sub-goals in turn.

4.3 The Science Goal

In figure 6, the goal, ORepScience, is shown as being solved by two fur-
ther goals. OAllBioAssumptions presents an argument that the occam-π
version is based on the same assumptions about the actual biology as the
C++ version. OSameAbs argues that the occam-π simulation abstracts

116 Ghetiu, Alexander, Andrews, Polack and Bown

OCodeStructures

The code of O

implements all the code

structures of C

CCodeStruct

Description of

code structures

used in C

AlgMapping

Table showing

how algorithms of

C are

implemented in O

CParameters

C is configured to use

the same parameter

values as O

ParameterComp

arison

Table showing

value of each

parameter in O

and C

CParameters

List of parameter

values used in C

OAlgorithms

O implements algorithms that

are computationally

equivalent to the key

algorithms in C

ODataStructures

O is implemented using data

structures that are equivalent to

the data structures used in C,

given the algorithms used in O

DataMapping

Table showing how

data structures of

C are implemented

in O

ORepImpAbs

O uses implementation

abstractions that are

adequately equivalent to those

of C

Fig. 7. Elaboration of the goal to show that the simulations represent the same
implementation abstractions, from figure 5

from the details of the biology in the same way as the C++ version.
Again, we expand the goals by providing context. From these goals, we
directly reach the evidence required, with solutions pointing to tabular
comparisons.

We could expand the argument, and the GSN, further to argue over
each compared assumption or abstraction, providing a specific argument
that each pair is adequately equivalent. This might be necessary if scien-
tist found the comparison tables unacceptable without further evidence.

4.4 The Implementation Goal

The second child goal in figure 5, ORepImpAbs, is expanded in figure
7, with new sub-goal relating to the adequate equivalence of the code
structure (OCodeStructures) and parameters (OParameters) in the two
simulations. The reasoning here is that the simulation implementations

Equivalence Arguments for Complex Systems Simulations 117

are adequately equivalent if they run equivalent algorithms on equivalent
data structures and use the same parameter settings.

OParameters is solved directly by a table comparing parameters in
the two simulations, whilst OCodeStructures is further decomposed into
a claim about algorithms and a claim about data structures. Each of
these is, again, solved by a table that compares key elements of the two
implementations.

Again, despite the appearance of precision provided by the GSN no-
tation, much of the argument here is still implicit and left to the reader
to infer. For example, it is implicit that equivalence of code structures
and equivalence of parameters is sufficient to argue equivalence of imple-
mentation. Similarly, the argument that two algorithms in the table are
equivalent is not made explicit. A software expert could verify or refute
our claims, by whatever means they chose, but the non-expert must take
our assertions on trust or ask for a further level of argument.

Also note that although the top-level goal talks about equivalence in
terms of a black box that produces results, the argument here is white-
box – we talk about how the simulation works internally. We are using
white-box methods to support a claim expressed in black-box terms. This
is similar to software testing, where it is common to combine white-box
and black-box methods.

4.5 The Results Goal

The third child goal in figure 5, OSameResults, is decomposed, in figure
8, into claims relating to the testing and experimentation on the two
simulations.

OCBoundaryCases claims that the two simulations provide the same
results for boundary and extreme cases within the valid range. This is
based on a common testing strategy, to establish that unusual situations
are properly managed. We have not developed this goal yet, as is shown
by the diamond beneath the goal box. To develop it, we need to con-
sider what cases to test, in terms of the parameter and value settings
that characterise each case – for instance, we may test both simula-
tions on the case where all plants are the same, in order to check that
clonal reproduction is implemented similarly; we might then check the
behaviours that result with very small and very large initial numbers
of plants (starting with the same plant populations), then look at the
effects of extreme environments. Unless equivalence were obvious – in a
very poor environment, we might be able to see that all plants died as
soon as the minimum time (trait survival assessment period) had elapsed
– in all cases, we would be using statistical analysis to determine accept-
able equivalence of the results, as described above.

118 Ghetiu, Alexander, Andrews, Polack and Bown

RangeOfConcern

Description of the range

of input parameters over

which C model is valid

and interesting

OSameResults

O gives same results

as C

OCBoundaryCases

O gives same result as C in

boundary cases of valid

range

OCExperiments

O gives same result as C in

original experiments used to

validate C

CExperiments

Description of original

experiments used to

validate C

J

CExperimentsGood

The experiments used to

validate O provide a good

test case because...

ArgCExp

Argument over N

experiments

Exp1Same

Experiment 1 gives the

same result in O and C

ExpXSame

Experiment X gives the

same result in O and C

Exp1Results

Results of

experiment 1

in O and C

BoundaryCases

Description of

boundary cases

n=N

Fig. 8. Elaboration of the goal to show that the simulations produce equivalent
results, from figure 5

OCExperiments states that, when the simulations are set up to repli-
cate the same experiments (e.g. same environment and plant population,
same trait and resource distributions), the results are the same – again
using statistical analysis to determine equivalence.

As OCExperiments is critical to our argument, we expand the goal
further to argue under the strategy of result similarity from n experi-
ments (ArgCExp) – we could add a context here, that n represents the
specific experiments conducted on the C++ simulation, as reported in
the literature. Below ArgCExp, experiments are enumerated – here using
the GSN version of ellipsis for brevity. We are showing that each entry
in some list has been considered, and evidence produced.

The whole argument fragment in figure 8 is in the context of Range-
OfConcern. This returns to the point made in defining adequately equiv-
alent for the top goal, that there is a range over which we can produce
equivalent results, and that, in this case, we can only claim that the
two simulations are equivalent when performing the type and scale of
experiments for which the C++ simulation was originally designed.

Equivalence Arguments for Complex Systems Simulations 119

In figure 8, CExperimentsGood is a justification node – shown by a J
next to the node. When expanded, it identifies a justification of why we
can assume that OCExperiments supports OSameResults.

5 Solution Data

The previous section summarises the argument of adequate equivalence
which we are making, and which we present to the scientist for review and
external scrutiny. We now consider some of the evidence, or solutions,
that support the argument.

Most of our argument of adequate equivalence points to tabular com-
parisons. We briefly cover two of the biological aspects, but then focus
on structural comparison from the implementation argument structure,
which raises most of the interesting issues of equivalence. The genera-
tion of evidence for the argument of adequately equivalent science is, in
general, more interesting, and the establishment of this argument will
be essential when we extend the simulation to support further experi-
ments on the intra-specific plant variation. However, for the argument
of simulation equivalence, the science has already been captured by J.
Bown in constructing the original C++ simulation (and reviewed by the
scientists with whom he was working). We have essentially one source,
Bown et al [6], and, throughout, we refer to an interpretation of it that
is directly expressed in the C++ implementation.

5.1 Biological Assumptions

Biological assumptions were not explicitly identified in the body of work
represented by Bown et al [6]. However, we have had to identify some
assumptions in order to complete the re-engineering, and can use these
to strengthen the argument of equivalence. Table 2 lists some of the
assumptions that form the context CAssumptions in figure 6. These have
been confirmed by the scientist, giving us confidence that the occam-π
simulation captures the assumptions on which the C++ simulation was
based.

5.2 Biological Abstractions

Between biological facts and assumptions and the construction of com-
puter simulations, we make various abstractions to map the real world
into the computational one. The abstractions are influenced by the plat-
form on which the computer simulation is built, as well as subjective
factors. To expand the CAbstractions context in figure 6, we collect the

120 Ghetiu, Alexander, Andrews, Polack and Bown

Environment Assumptions

1 The soil properties do not change radically in time.

2 The environment can be seen as a plain. Various three-dimensional land-
scapes will not affect the outcome.

Plant Assumptions

3 The uptake area of a plant can be considered conic.

4 The tap root is generally more developed than the fine roots.

5 The ratio between resource allocation towards growth and towards repro-
duction varies slowly in time.

6 Germination takes place in no longer than one day.

7 Plants develop unhindered, if having necessary resources.

8 Plants release their resources back into their environment, when they die.

9 Plants may die of starvation or due to unpredictable events.

10 Seed dispersal happens over a short period (a matter of days).

11 Each seed requires a similar amount of resource.

12 Seeds that fall in populated areas, most often do not germinate.

Table 2. Expanding CAssumptions – some of the assumptions made in the
C++ model [6], and mirrored in the occam-π simulation

abstractions made by Bown et al [6], some of which are listed in table
3). We then checked that the occam-π simulation respects each of these
abstractions.

5.3 Algorithm Mapping

To compare the algorithms of the two simulations, a sub-goal of OCode-
Structures in figure 7, we present pseudo-code summaries and check sub-
jectively for similarity. Figure 9 gives a pseudo-code overview of the two
simulations, whilst figure 10 focuses on the algorithm for resource uptake.
Note that the pseudo-code for the occam-π implementation is written to
facilitate comparison with the C++, rather than in a way that native
occam-π programmers would use.

The sequential C++ implementation has a centralised architecture.
This requires loop-iteration over, for example, all instances of location
and all plant individuals. Because occam-π is a parallel language, all the
occam-π processes (plants, locations) could execute in parallel, shown in
figure 9 as each individual and each location.

In the C++ model, a double-pass approach is used to reduce posi-
tional biases – resource uptake and usage are separated into two phases,
otherwise subsequent behaviours such as seed dispersal would take place
in the order in which plants are iterated. In the occam-π simulation,

Equivalence Arguments for Complex Systems Simulations 121

Environment Abstractions

1 Resource release and replenishment rates are constant.

2 The environment is 2D and each grid cell can hold only one plant.

3 The maximal level of resource is homogeneous across the environment.

Plant Abstractions

4 Requested uptake is homogeneous with respect to the distance from the
plant.

5 The uptake area has a regular shape and is not affected by neighbouring
competitors roots.

6 The ratio between resource allocation towards growth and towards repro-
duction, does not vary in time.

7 Germination is instantaneous (takes only one time step).

8 When they die, plants release all of their resources into the environment.

9 Plants die of random events and starvation.

10 Reproduction is instantaneous (takes only one time step).

11 Each seed requires an identical amount of resource.

11 Seeds die if cells are occupied, otherwise they become plants.

12 Reproduction is clonal.

Table 3. Expanding CAbstractions – some of the abstractions made in the
C++ model [6], and mirrored in the occam-π simulation

C++ simulation

instantiate locations

instantiate individuals

foreach timestep

/* resource uptake */

foreach location

assess resource demand

release resources

replenish substrate

/* resource usage */

foreach individual

allocate uptake

assess death

if not dead

assess development

assess reproduction

occam-π simulation

instantiate locations and servers

instantiate individuals

while simulation_running

/* resource uptake */

each individual

place resource demand

SYNCHRONISE

each location

process resource demands

replenish substrate

/* resource usage */

each individual

allocate uptake

assess death

if not dead

assess development

assess reproduction

Fig. 9. Comparing the C++ and occam-π simulations

122 Ghetiu, Alexander, Andrews, Polack and Bown

Resource uptake (C++)
Sequential algorithm

Main control loop:

foreach location

select uptake_area of location

create empty demand_list

foreach loc in uptake_area

if loc occupied

select occupying plant

calculate plant demand on

location

add demand to demand_list

normalise demand_list

foreach demand in demand_list

select demanding plant

add resources to plant uptake

replenish location’s substrate

Resource uptake (occam-π)
Parallel algorithm

Plants:

foreach location in uptake_area

send resource request

SYNCHRONISE

foreach location in uptake_area

if resources released

uptake resource

Locations:

create empty demand_list

while running

if resource request received

store request

if all requests received

normalise demand vector

foreach d in demand_list

select demanding plant

send resources to plant

reset demand_list

replenish substrate

Fig. 10. Comparing resource uptake algorithms for the C++ and occam-π
simulations

synchronisation means that the plant processes will be blocked until all
have finished sending their resource requests, when all processes will be
released to proceed to resource uptake.

In reviewing the complete comparison of the high-level algorithm, we
found that, in terms of semantics and results, the two implementations
can be considered equivalent. The resource flow is identical; only the
architecture through which it is carried out differs.

The second pseudo-code comparison, figure 10, refers to the pro-
cess of resource uptake. In the C++ implementation, resource uptake
is location-centric – the neighbourhood of each location is scanned for
plants and the demand of each plant is calculated and stored. A nor-
malisation process is necessary to divide the resource fairly among the
plants. In the occam-π implementation, however, the process relates more
closely to the biology, as each plant interacts directly with its location.
The computational abstraction is, in this case, that of plants and loca-
tions interacting through a client-server protocol [14].

Equivalence Arguments for Complex Systems Simulations 123

Fig. 11. Class diagram (UML notation) of classes in the C++ simulation

In this case, the algorithm comparison shows that, although the input
and output of the algorithms is equivalent, the detail is different. To make
a strong equivalence argument, we would need also to look at evidence
of resource uptake behaviours through experimentation and testing.

5.4 Data Mapping

The second sub-goal of OCodeStructures in figure 7 concerns the ar-
gument of adequate equivalence of data representations. We can explore
this similarity starting from a class diagram of the C++ implementation,
figure 11, and a similar diagram of the occam-π processes and channels,
figure 12.

UML provides an object-oriented modelling notation which is well-
adapted to expressing the class structure of C++, but the notation of
figure 12 is just an ad hoc representation of occam-π processes and chan-
nels. However, informally, we can compare data types between the two
diagrams. As in earlier argument fragments, we present the evidence at
this level for review; we only need to elaborate the comparison if the
scientist is not prepared to accept it.

The C++ implementation of Bown et al [6] uses the class Location
to represent represents cells of the environment. Each location contains
a resource substrate, of class Substrate, and a plant individual, of class
Plant. Because plants do not move, a Location instance is represented
as being composed of one Plant instance and one Substrate instance.
The Location attribute, occupied takes the value 1 if there is a plant
growing at a location, and 0 when a location is empty – in the C++ an

124 Ghetiu, Alexander, Andrews, Polack and Bown

Fig. 12. Processes and channels in the occam-π implementation (notation un-
defined)

unoccupied location is associated to an “empty” plant instance, rather
than to no plant instance. The diagram does not show the relationship
between a location and the plants that are taking up resource from it,
as the C++ implementation calculates this from the plant traits and
location at run-time.

In the occam-π implementation, a similar form is used for the loca-
tion substrate, but occam-π supports more flexible data structuring for
locations and plants. These are dynamic processes (the occam-π PROC
structure), which interact through channels (the occam-π CHAN struc-
ture). The relation between plants and locations is implemented through
explicit channel communication. The channel ends held by each plant
process can be connected to the corresponding channel ends in any lo-
cation process.

Comparing the two data structure implementations, we can observe
differences in terms of attributes and their data types, the nature of
plants, locations and their relationship. By reference to the biological
model that these represent, we could declare ourselves adequately confi-
dent that these implementations represent implementations of the same
abstract model. However, there are some subtleties that may present
problems, such as the subtle quantitative effects of internal data for-
mats: the C++ implementation uses the type double while the occam-π
one uses REAL32. The two differ in terms of precision, double being rep-

Equivalence Arguments for Complex Systems Simulations 125

resented on 64 bits, while REAL32 on 32 bits. Again, we need to check the
effect of this difference through appropriate experimentation and testing
– at this stage, we do not believe that the difference in precision quali-
tatively affects the simulations results, but we may need more evidence
to convince the scientist.

6 Discussion

In this paper, we present a summary of an argument of adequate equiva-
lence between an existing C++ simulation and a re-engineered version in
occam-π. If we can assume that the original simulation is valid, then es-
tablishing the equivalence of the occam-π version would imply its validity
in the same context and for the same purposes as the original simulation
(see [26]). We used GSN to visualise the argument structure: those faced
with evaluating our argument can immediately see the basis of the belief
that the two models are adequately equivalent, and can challenge areas
that they do not consider to be sufficiently supported by evidence.

This work is part of the CoSMoS project4, which is developing a
general framework for the simulation of complex systems. Part of this
framework concerns the routine collection of assumptions – about the
domain, the design, and the implementation. In the CoSMoS context,
just the exposure of assumptions has led to scientific acceptance of some
of our experimental simulations [2]. The work presented in this paper is
a first step towards producing guidance and techniques for systematis-
ing argumentation relating to simulation development. However, turning
assumptions into evidence for arguments that a simulation is a valid im-
itation of the real world, for a given scientific purpose, is a non-trivial
activity, which is the subject of ongoing research.

Computer scientists who have spent a career in the deterministic
world of the digital computer are often sceptical about the value of ar-
guments of validity, safety etc. However, in simulating complex systems
for scientific study, we are not seeking to model or implement tradi-
tional deterministic computer systems. A simulation that reduces the
interacting complex systems of the real world to a deterministic system
is unlikely to be adequate for the areas of scientific research that we seek
to support.

Our work, here and in the CoSMoS project, also signals a departure
from the common form of computer applications, in that our simulations
are designed to support specific domain models – a particular expert’s
view of a particular scientific context. The aim of the simulation is to

4 http://www.cosmos-research.org

126 Ghetiu, Alexander, Andrews, Polack and Bown

support those areas of scientific experimentation that rely on that spe-
cific scientific context. If the scientist wishes to extend or adjust the
context, then the simulation models must be extended or adjusted, and
the adequate equivalence re-established. Later revisions can be facilitated
through the careful recording of the argument of equivalence or validity
for each simulation; if a preceding simulation was already acceptable,
scientifically, and a new simulation corresponds to that simulation for
part of its range, then we need concentrate only on what has changed.

This brings us to the use of occam-π in the re-engineered simulation
presented here. To support the need to extend or adjust simulations
in line with scientists’ requirements, we need flexible implementations.
In CoSMoS, we have used a range of implementation languages, and,
although occam-π does not have the mature support of languages like
C++ and Java, we have found that applications written in occam-π are
easy to adapt and re-use. The CoSMoS project is assembling concrete
evidence of this assertion, as well as seeking to improve the maturity of
the occam-π programming environment.

7 Future Work

In relation to the specific example presented here, we need to complete
the argument of adequate equivalence, and expose it all to the critical
review of our scientist and his colleagues. Our next step is then to use the
occam-π implementation to scale up the original experiments, which will
improve the quality of the scientific evidence we can provide. We will then
produce a series of modified simulations to support other experiments
on intra-species and inter-species plant ecology, in collaboration with
Bown’s group.

In relation to the CoSMoS project, the work is contributing to the
body of evidence on use and suitability of occam-π for developing flexi-
ble, validated simulations to support scientific work. The argumentation
processes will form part of the CoSMoS framework for complex systems
modelling and simulation – we continue to review SCS work for guidance
in analysis, evidence collection and management, argument construction
and validation. We plan to provide specific guidance on producing GSN
type arguments in the context of complex systems simulation. In addi-
tion, we are applying the activities outlined here in a range of other case
studies including various scientific studies of the immune system and
work on swarm robotics.

Equivalence Arguments for Complex Systems Simulations 127

8 Acknowledgements

The work of Ghetiu, Andrews and Polack is supported by the CoSMoS
project, EPSRC grants EP/E053505/1 and EP/E049419/1.

References

[1] R. Alexander, R. Alexander-Bown, and T. Kelly. Engineering safety-
critical complex systems. In Proceedings of the 2008 Workshop on Com-
plex Systems Modelling and Simulation, York, UK, September 2008, pages
33–62. Luniver Press, 2008.

[2] P. Andrews, F. Polack, A. Sampson, Timmis J, L. Scott, and M. Coles.
Simulating biology: towards understanding what the simulation shows.
In Proceedings of the 2008 Workshop on Complex Systems Modelling
and Simulation, York, UK, September 2008, pages 93–123. Luniver Press,
2008.

[3] U. Bausenwein, P. Millard, B. Thornton, and J. A. Raven. Seasonal
nitrogen storage and remobilization in the forb rumex acetosa. Functional
Ecology, 15(3):370–377, 2001.

[4] M. Begon, C. R. Townsend, and J. L. Harper. Ecology: From individuals
to ecosystems. Blackwell Publishing, fourth edition, 2006.

[5] Eric Bonnici and Peter H. Welch. Mobile processes, mobile channels and
dynamic systems. In 2009 IEEE Congress on Evolutionary Computation
(CEC 2009), pages 232–239. IEEE Press, 2009.

[6] James L. Bown, Elizaveta Pachepsky, Alistair Eberst, Ursula Bausenwein,
Peter Millard, Geoff R. Squire, and John W. Crawford. Consequences of
intraspecific variation for the structure and function of ecological com-
munities: Part 1. model development and predicted patterns of diversity.
Ecological Modelling, 207(2-4):264–276, October 2007.

[7] J. Bryden and J. Noble. Computational modelling, explicit mathematical
treatments, and scientific explanation. In Artificial Life X, pages 520–526.
MIT Press, 2006.

[8] J. M. Epstein. Agent-based computational models and generative social
science. Complexity, 4(5):41–60, 1999.

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[10] T. P. Kelly. Arguing safety – a systematic approach to managing safety

cases. PhD thesis, Department of Computer Science, University of York,
1999. YCST 99/05.

[11] S. Lavorel and E. Garnier. Predicting changes in community composition
and ecosystem functioning from plant traits: revisiting the holy grail.
Functional Ecology, 16(5):545–556, 2002.

[12] Nancy Leveson. High-pressure steam engines and computer software.
IEEE Computer, 27(10):65–73, 1994.

[13] C. Marks and M. Lechowicz. A holistic tree seedling model for the inves-
tigation of functional trait diversity. Ecological Modelling, 193(3-4):141–
181, March 2006.

128 Ghetiu, Alexander, Andrews, Polack and Bown

[14] J. M. R. Martin and P. H. Welch. A Design Strategy for Deadlock-Free
Concurrent Systems. Transputer Communications, 3(4):215–232, 1997.

[15] G. F. Miller. Artificial life as theoretical biology: How to do real science
with computer simulation. Technical Report Cognitive Science Research
Paper 378, School of Cognitive and Computing Sciences, University of
Sussex, 1995.

[16] E. Di Paolo, J. Noble, and S. Bullock. Simulation models as opaque
thought experiments. In Artificial Life VII, pages 497–506. MIT Press,
2000.

[17] F. Polack, S. Stepney, H. Turner, P. Welch, and F. Barnes. An architec-
ture for modelling emergence in CA-like systems. In ECAL, volume 3630
of LNAI, pages 433–442. Springer, 2005.

[18] F. A. C. Polack, T. Hoverd, A. T. Sampson, S. Stepney, and J. Timmis.
Complex systems models: Engineering simulations. In ALife XI, pages
482–489. MIT Press, 2008.

[19] Fiona A. C. Polack, Paul S. Andrews, and Adam T. Sampson. The
engineering of concurrent simulations of complex systems. In CEC 2009,
pages 217–224, 2009.

[20] F. W. Preston. The canonical distribution of commonness and rarity.
Ecology, 43(3):185–215, 410–432, 1962.

[21] B. Reineking, M. Veste, C. Wissel, and A. Huth. Environmental variabil-
ity and allocation trade-offs maintain species diversity in a process-based
model of succulent plant communities. Ecological Modelling, 199(4):486–
504, December 2006.

[22] Carl G. Ritson, Adam T. Sampson, and Frederick R. M. Barnes. Mul-
ticore Scheduling for Lightweight Communicating Processes. In John
Field and Vasco T. Vasconcelos, editors, Coordination Models and Lan-
guages, 11th International Conference, COORDINATION 2009, Lisboa,
Portugal, June 9-12, 2009. Proceedings, volume 5521 of Lecture Notes in
Computer Science, pages 163–183. Springer, 2009.

[23] Carl G. Ritson and Peter H. Welch. A process-oriented architecture for
complex system modelling. In Alistair A. McEwan, Steve Schneider, Wil-
son Ifill, and Peter Welch, editors, Communicating Process Architectures
2007, volume 65 of Concurrent Systems Engineering Series, pages 249–
266, Amsterdam, The Netherlands, 2007. IOS Press.

[24] Adam T. Sampson, John M. Bjorndalen, and Paul S. Andrews. Birds
on the wall: Distributing a process-oriented simulation. In 2009 IEEE
Congress on Evolutionary Computation (CEC 2009), pages 225–231.
IEEE Press, 2009.

[25] R. G. Sargent. The use of graphical models in model validation. In 18th
Winter Simulation Conference, pages 237–241. ACM, 1986.

[26] R. G. Sargent. Verification and validation of simulation models. In 37th
Winter Simulation Conference, pages 130–143. ACM, 2005.

[27] G. R. Squire. The Physiology of Tropical Crop Production. Oxon (UK).
C.A.B. International, 1990.

[28] David Tilman. Causes, consequences and ethics of biodiversity. Nature,
405(6783):208–211, May 2000.

Equivalence Arguments for Complex Systems Simulations 129

[29] Heather Turner, Susan Stepney, and Fiona Polack. Rule migration: Ex-
ploring a design framework for emergence. International Journal of Un-
conventional Computing, 3(1):49–66, 2007.

[30] M. Wheeler, S. Bullock, E. Di Paolo, J. Noble, M. Bedau, P. Husbands,
S. Kirby, and A. Seth. The view from elsewhere: Perspectives on alife
modelling. Artificial Life, 8(1):87–100, 2002.

[31] S. P. Wilson, J. A. McDermid, C. H. Pygott, and D. J. Tombs. Assessing
complex computer based systems using the goal structuring notation. In
2nd Int. Conf. Engineering of Complex Computer Systems, pages 498–
505, 1996.

[32] David C. Wood and Peter H. Welch. The Kent retargetable occam com-
piler. In WoTUG ’96: Proceedings of the 19th world occam and transputer
user group technical meeting on Parallel processing developments, pages
143–166. IOS Press, 1996.

130 Ghetiu, Alexander, Andrews, Polack and Bown

