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Abstract
Data-type generic programming can be used to traverse and manip-
ulate specific parts of large heterogeneously-typed tree structures,
without the need for tedious boilerplate. Generic programming is
often approached from a theoretical perspective, where the empha-
sis lies on the power of the representation rather than on efficiency.
We describe use cases for a generic system derived from our work
on a nanopass compiler, where efficiency is a real concern, and
detail a new generics approach (Alloy) that we have developed in
Haskell to allow our compiler passes to traverse the abstract syn-
tax tree quickly. We benchmark our approach against several other
Haskell generics approaches and statistically analyse the results,
finding that Alloy is fastest on heterogeneously-typed trees.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]

General Terms Languages, Performance

Keywords Generic Programming, Haskell, Alloy

1. Introduction
Data-type generic programming concerns functions that depend on
the structure of data-types, such as pretty-printing. A very common
use is the automatic application of a function that operates on sub-
elements of a larger type. This avoids the need for large amounts of
systematic boilerplate code to traverse all the types not of interest
to apply functions to the types that are of interest.

Generic programming research has become popular over the
last ten years, particularly in the functional programming language
Haskell (for a review, see Rodriguez et al. 2008). The approaches
mainly differ by theoretical approach or the use of different lan-
guage features to achieve generic programming (including several
language extensions for generic programming).

Our interest in generic programming is pragmatic. We use
generic programming in a compiler to eliminate boilerplate, and
we require a straightforward API backed by a very fast generics
approach (see section 2 for more detail of our requirements). We
began by using a pre-existing generics system, but found that it was
not fast enough for our needs.

We thus developed our own generics library for Haskell, Al-
loy, that blends together features of several existing generics ap-
proaches into an efficient whole. Our contributions are as follows:
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• We describe the basic algorithm, implementation and API of
Alloy, a library for generic traversals and transformations built
using Haskell type-classes (section 3). We later describe a fur-
ther improvement to our approach (section 7).
• We explain several real use cases of data-type generic program-

ming in our compiler, and examine how to implement them ef-
ficiently (section 4).
• We benchmark and statistically analyse the results of Alloy and

existing generics approaches (sections 5, 6 and 6.5). The results
show that Alloy is faster than existing approaches for traversing
heterogeneously-typed trees (we conclude in section 8).

2. Motivation
We develop Tock, a compiler for imperative parallel languages such
as occam-π (Welch and Barnes 2005), in Haskell. Tock is currently
over 20,000 non-blank lines of Haskell code. Tock is a nanopass
compiler (Sarkar et al. 2004), meaning that its design consists
of many (currently around 40) small passes that operate on the
Abstract Syntax Tree (AST) of the program, each performing one
simple operation, for example: making names unique, or checking
that variables declared constant are not modified.

A pass that makes names unique must traverse the entire AST,
operating on all names. A constant folding pass must traverse
the entire AST, operating on all expressions. To avoid writing
boilerplate for each traversal, we use generic programming. To
ensure fast compilation of occam-π code, the 40 traversals of the
tree must be as fast as possible.

Our passes typically operate on one or two types, but the most
complex passes (such as the type-checker) operate on up to nine
types in one traversal, with complicated rules for when the traversal
must descend further into the tree, and when it must not. Our AST
currently consists of around 40 different algebraic data types, with
around 170 constructors between them. If all the basic sub-types
(lists, pairs, primitive types, etc) are also included, we have around
110 different types.

We began by using the Scrap Your Boilerplate (SYB) library
(Lämmel and Peyton Jones 2003), we found it was too slow for
our purposes, leading us to first augment SYB, and then replace it
altogether with Alloy.

We require the following generics facilities:

• Monadic transformations. Most transformation functions
must run in our compiler monad, so that they have access to
the compiler’s state and can report errors. As we will see later,
while we require the full power of monads for the compiler, our
generics approach only requires the more general applicative
functors (McBride and Paterson 2008).
• Multiple target types. Several passes – particularly those that

walk the tree updating some internal state – need to operate
upon multiple target types at once.



• Explicit descent. Some passes must be able to decide whether
– and when – to descend into a subtree. A convenient way to do
this is to provide a function like gmap or descend. (An alterna-
tive used by Strafunski (Lämmel and Visser 2002) is to define
tree traversal strategies separately from the transformation func-
tions, but in Tock this would mean duplicating decision logic in
many cases, since traversal strategies are often pass-specific.)
• High-level common operations. Most passes do not need ex-

plicit descent; we need helper functions like everywhere to apply
simple depth-first transformations and checks to the tree.
• No need to define instances by hand. Tock’s AST representa-

tion is complex, and sometimes extended or refactored. Writing
type class instances by hand would require a lot of effort (and
be prone to mistakes); we must be able to generate them auto-
matically, such as with an external tool.
• Decent performance. Walking the entire tree for every pass is

unacceptably inefficient; each traversal should examine as few
nodes as possible.
• Library-level. We want it to be easy to distribute and build

Tock. Therefore any generics approach that we use must be
in the form of a library that uses existing Glasgow Haskell
Compiler (GHC) features, so that it can be built with a standard
distribution of GHC by our end-users. Ideally, we would depend
only on extensions to the Haskell language that are likely to end
up in the next Haskell standard, Haskell Prime.

In section 4 we will detail several use cases that show examples
of where we need these different features of generic programming.
There are several features of generic programming in the literature
that we do not require. We refer to them, where possible, by the
names given in Rodriguez et al. (2008):

• Multiple arguments: This is required by operations such as
generic zipping, or generic equality. In Tock we always operate
on a part of the AST and do not need this.
• Constructor names: This is required by operations such as

gshow. While Alloy could easily be extended to support this,
we do not require this functionality in Tock.
• Type-altering transformations: We need transformations of

the form a -> a (and a -> m a), but we do not need type-altering
transformations of the form a -> b.
• Extensibility: Several authors (Hinze 2004; Oliveira et al.

2007; Lämmel and Peyton Jones 2005) have identified the prob-
lem that once generic functions have been defined as a list of
specific cases (also known as tying the recursive knot), a new
case cannot easily be added. This is not a problem in Tock,
where we never need to extend pass functions with additional
specific cases outside of the definition of the pass.

3. Alloy
Alloy, our generics library, is centred on applying type-preserving
transformation operations to all of the largest instances of those
types in a heterogeneously-typed tree. The largest instances are all
those not contained within any other instances of the type-set of
interest (see figure 1 for an illustration). The transformations can
then descend further if required.

We do this by taking a set of transformation operations (opset
for short) and comparing the type that the operation acts on with
a current suspect type (think of the type being investigated for
matches; hence a suspect). If there is a match, the transformation
is applied. If there is no match, the operations are applied to the
children (immediate sub-elements) of the suspect type and so on
until the largest types have all been transformed in such a way.

Figure 1. An illustration of the largest types in a tree. The shape
of a node indicates its type. The shaded shapes are the largest
instances when the types of interest are triangles and pentagons.

Our basic algorithm is to have a queued opset ready to be
compared to the suspect type, and a descent opset ready to be
applied to the suspect’s children if no exact match is found. We
repeatedly take one operation from the queued opset, and compare
it to the suspect type. There can be three possible results of this
comparison:

1. the suspect type matches the operation type,

2. the suspect type can contain the operation type, or

3. the suspect type cannot contain the operation type.

In case 1, the operation is applied and the result returned. No
further work is done by the current call. In case 2, the operation
is retained, by moving it onto the descent opset. In case 3, the
operation is discarded.

As an example, consider the following type:

data Foo = FooInt Int Int | FooFloat Float

We wish to apply transformations to everything of type Float,
Int and String that might be contained in the suspect type Foo.

Figure 2 demonstrates our opset being compared against the
suspect type Foo. The operations on Float and Int are retained
(because Foo can contain those types), whereas the operation on
type String is discarded.

Alloy is similar to several other approaches, such as Uniplate
(Mitchell and Runciman 2007), SYB (Lämmel and Peyton Jones
2003) and Smash (Kiselyov 2006). The two key features of Alloy,
intended to increase its efficiency, are that:

1. All our decisions about types are made statically via the Haskell
type-checker, rather than dynamically at run-time. Smash and
Uniplate take the same approach, in contrast to SYB’s use of
dynamic typing.

2. Unlike Smash or SYB, we discard operations that can no longer
be applied anywhere inside the suspect type. Uniplate, which
only supports one target type, stops the traversal when this tar-
get type cannot possibly be found anywhere inside the suspect
type. We extend this optimisation to multiple types. Not only do
we stop when no operations can be further applied, but we also
dynamically discard each operation individually when it cannot
be applied anywhere inside the suspect type. This is a primary
contribution of Alloy.



Figure 2. An example of processing an opset with respect to a
suspect type. The types of the transformations in the queued opset
are progressively compared to the suspect type. If, like String , they
cannot be contained in the suspect type, they are discarded. If they
can be contained, like Float and Int , they are retained by being
moved to the descent opset.

3.1 The Type-Class
Haskell’s type-classes are a form of ad-hoc polymorphism that al-
low functions to be specialised differently for different types. Like
Smash and Uniplate, we use Haskell’s type-classes to implement
Alloy; the library is centred around a type-class of the same name:

class Alloy opsQueued opsDescent suspect where
transform :: opsQueued -> opsDescent -> suspect -> suspect

The type-class has three parameters. The first is the queued
opset, the second is the descent opset and the third is the suspect
type, all of which were described in the previous section. Our
opsets are implemented in a cons fashion (with terminator BaseOp):

data BaseOp = BaseOp
data t :- ops = ( t -> t ) :- ops
infixr 7 :-

This allows the value of the opsets to directly mirror the type; a
sample opset that works on String , Float and Int is:

ops :: String :- Float :- Int :- BaseOp
ops = processString :- processFloat :- processInt :- BaseOp

Most of our use of Alloy is via two simple helper functions. The
descend function1 is used to apply the transformations to a value’s
children, which is done by using the transform function with an
empty queued opset and a full descent opset – which will result in
an application of the descent opset to all the children of the value.
In contrast, our apply helper function begins with a full queued
opset and an empty descent opset, and will attempt to apply the
operations directly to the target, before descending if none can be
applied:

descend :: Alloy BaseOp ops t => ops -> t -> t
descend ops = transform BaseOp ops

apply :: Alloy ops BaseOp t => ops -> t -> t
apply ops = transform ops BaseOp

We can thus write a compiler pass (that has no automatic de-
scent) as follows:

alterNames :: AST -> AST
alterNames = apply ops

where
ops = doName :- BaseOp

doName :: Name -> Name
doName = ...

3.2 Instances
As an example for instances we will consider again the type from
the previous section:

data Foo = FooInt Int Int | FooFloat Float

To aid understanding, we will also provide a Haskell-like
pseudo-code for the instances, of the form:

alloyInst :: [Op] -> [Op] -> a -> a
alloyInst queued descent x = ...

3.2.1 Base Case
We require a base case instance, for when there are no operations
left in either opset – none to try to apply to the suspect type, and
none to apply to its children. In this case we are no longer interested
in this element or anything beneath it, and the identity operation is
used on the data:

1 The descend function has the same behaviour as the compos operator
defined by Bringert and Ranta (2008).



instance Alloy BaseOp BaseOp Foo where
transform x = x

This is equivalent in our pseudo-code to:

alloyInst [] [] x = x

3.2.2 Matching Case
We require a case where the type of the operation matches the
current type:

instance Alloy (Foo :- opsQueued) opsDescent Foo where
transform ( f :- ) x = f x

Here, we have found a type of interest and the appropriate oper-
ation to apply. Therefore we simply apply the operation, ignoring
the remaining queued and descent opsets (any required further de-
scent will be done by the f function). This is analogous to:

alloyInst ( f: ) x | typeOfOp f == typeOf x = f x

The matching of the Foo type in our instance declaration is here
converted into a guard that uses notional type-getting functions.

3.2.3 Descent Case
We require an instance dealing with the case where there are no
operations remaining in the queued opset to try to apply to the
suspect type, but there are operations remaining in the descent opset
to apply to all the sub-elements:

instance ( Alloy ( t :- ops) BaseOp Int ,
Alloy ( t :- ops) BaseOp Float) =>

Alloy BaseOp (t :- ops) Foo where

transform opsD (FooInt m n)
= FooInt ( transform opsD BaseOp m) (transform opsD BaseOp n)

transform opsD (FooFloat f )
= FooFloat ( transform opsD BaseOp f)

The type t can be anything here; expressing the opset as a
t:-ops indicates to the type system that it is distinct from BaseOp,
to prevent the instances overlapping (unlike Haskell’s normal in-
order pattern-matching, with type-classes every instance must be
uniquely determinable from the head). One can think of the con-
structor BaseOp as being the type-level equivalent of the empty list
pattern, [], whereas the pattern ( t :- ops) is akin to the cons pattern
(x:xs). This is reflected in the two cases added to our pseudo-code:

alloyInst [] opsD@( : ) (FooInt m n)
= FooInt ( alloyInst opsD [] m) ( alloyInst opsD [] n)

alloyInst [] opsD@( : ) (FooFloat f )
= FooFloat ( alloyInst opsD [] f )

The instance body has a case for each constructor of the al-
gebraic data type, and processes each sub-element with a further
traversal, where the descent opset is moved to be processed anew
on the sub-element type as the queued opset (and the descent opset
is emptied).

The head of the instance declaration lists the type-class require-
ments for these new traversals. In this case, the two types Int and
Float need to be processed with an empty descent opset and a full
queued opset.

3.2.4 Sliding Cases
The descent cases had generic opsets – that is, they did not exam-
ine what types were in the opsets. The remaining instances must all
consider whether the type of the operation at the head of the opset
matches, can be contained, or cannot be contained by the suspect
type. We perform this check at compile-time, by generating differ-
ent instances for each combination of suspect type and head of the
opset. A couple of the relevant instances for Foo are:

instance Alloy opsQueued (Int :- opsDescent) Foo =>
Alloy ( Int :- opsQueued) opsDescent Foo where

transform ( f :- opsQ) opsD x = transform opsQ ( f :- opsD) x

instance Alloy opsQueued (Float :- opsDescent) Foo =>
Alloy (Float :- opsQueued) opsDescent Foo where

transform ( f :- opsQ) opsD x = transform opsQ ( f :- opsD) x

These instances are processing operations on Float and Int –
two types that can be contained in Foo. The instance moves the op-
erations from the queued opset to the descent opset, and continues
processing the remainder of the queued opset.

Contrast this with the instance for String :

instance Alloy opsQueued opsDescent Foo =>
Alloy ( String :- opsQueued) opsDescent Foo where

transform ( f :- opsQ) opsD x = transform opsQ opsD x

Here, the operation is discarded (String cannot be contained by
Foo), and then we continue to process the remainder of the queued
opset. As well as not being applied to Foo, the operation will not
be checked against any of Foo’s children, because it is not added to
the descent opset. If Foo were a large data-type with many possible
sub-elements, this would save a lot of time.

These instances are reflected in the final case in our pseudo-
code, now presented alongside the rest of the code:

alloyInst [] [] x = x
alloyInst ( f: ) x | typeOfOp f == typeOf x = f x
alloyInst [] opsD@( : ) (FooInt m n)
= FooInt ( alloyInst opsD [] m) ( alloyInst opsD [] n)

alloyInst [] opsD@( : ) (FooFloat f )
= FooFloat ( alloyInst opsD [] f )

alloyInst ( f:fs ) opsD x
| typeOfOp f ‘canBeContainedIn‘ typeOf x

= alloyInst fs ( f : opsD) x
| otherwise = alloyInst fs opsD x

Recall that type-class instances must have a unique match –
unlike Haskell functions, they are not matched in-order. Hence our
pseudo-code has the same property; none of the pattern matches
(plus guards) overlap; this is the reason for the explicit pattern for
opsD on the third and fourth lines.

We could generate our instances using an approach like Smash,
where the information on type relations could be abstracted out
into one type-class, and the descent instances put into another, with
only four or so instances of Alloy to traverse the opset and build
on these type-classes. Some preliminary testing indicated that this
alternative approach ended up being slower at run-time – but it
would be easy to change to this model.

3.2.5 Polymorphic Types
In our compiler application, we have only one polymorphic type,
Structured (as well as uses of Maybe and lists). Typically, we want to
apply different operations to the instantiations of these types, e.g.
process Structured Process differently than Structured Expression
and [Char] differently than [Formal].

Alloy thus does not currently provide any special support for
polymorphic types (e.g. processing all Maybe a, for all a). Maybe Int
and Maybe Float are treated as two entirely separate types, just as
Int and Float are.

3.3 Monadic Alloy
As mentioned earlier, in our compiler nearly all of our passes
operate inside a monad. To support monadic transformations, all
we strictly need is support for applicative functors – every monad
can be made an applicative functor (McBride and Paterson 2008).
We must define a new type-class to support this:



class AlloyA opsQ opsD t where
transformA :: Applicative f => opsQ f -> opsD f -> t -> f t

In order for it to be apparent to the type system that the applica-
tive functor that transformA operates in is the same applicative func-
tor that the opsets use, we parameterise the opsets with the functor.
To support this we define our new opsets as follows:

data ( t :-* ops) f = (( t -> f t ) :-* ops f )
infixr 7 :-*
data BaseOpA f = BaseOpA

The use of this opset becomes apparent in an example:

fixNames :: AlloyA (Name :-* BaseOpA) BaseOpA a => a -> PassM a
fixNames = applyA (doName :-* BaseOpA)

where
doName :: Name -> PassM Name
doName = ...

The opset Name :-*BaseOpA is ready to be parameterised by an
applicative functor, and the functor being used is not mentioned
in the class constraint. The design of the :-* type is such that we
guarantee that all operations in the opset are using the same functor,
which a plain HList (Kiselyov et al. 2004) could not.

The instances for AlloyA are nearly identical to those given
for Alloy in the previous sections. The operations are of type (for
example) Int -> f Int rather than Int -> Int , and two cases are
slightly different – the base case and descent case:

-- Base case:
instance AlloyA BaseOpA BaseOpA Foo where

transformA = pure

-- Descent case:
instance (AlloyA ( t :-* ops) BaseOpA Int,

AlloyA ( t :-* ops) BaseOpA Float)
=> AlloyA BaseOpA (t :-* ops) Foo where

transformA opsD (FooInt m n)
= pure FooInt <*> transformA opsD BaseOpA m

<*> transformA opsD BaseOpA n
transformA opsD (FooFloat f )
= pure FooFloat <*> transformA opsD BaseOpA f

The instances for Alloy and AlloyA are so similar that we do not
have to generate the instances for both Alloy and AlloyA. We can
generate instances for AlloyA (the more general case), and define
Alloy in terms of AlloyA by converting each of the operations (using
some trivial type-level programming) in the opsets into operations
in the Identity monad2. However, this is not as fast (at run-time) as
generating specific instances for Alloy. Defining the pure version
in terms of the more general applicative functor version, and the
definitions the descent case is very similar to the ComposOp module
(Bringert and Ranta 2008).

3.4 Common Operations
The Alloy type-class we have shown is used to apply transforma-
tions to the largest values belonging to types of interest3 in a tree.
Often we actually want to apply a transformation to all types of
interest in a tree, which we can do by first wrapping each of the
transformation functions as follows:

makeBottomUp, makeTopDown :: Alloy BaseOp opsDescent t =>
opsDescent -> ( t -> t ) -> t -> t

makeBottomUp ops f = f . descend
makeTopDown ops f = descend . f

2 We do this in Tock, for the very few passes that are pure functions.
3 Recall that the largest types of interest are those not contained by any other
types of interest – see figure 1.

The difference between these two functions is whether the func-
tion is applied before or after the descent, which results in the
transformation either being bottom-up or top-down. We provide
top-down transformations for illustration; Mitchell and Runciman
(2007) rightly caution against the use of such transformations, be-
cause it is more likely than errors will be introduced with top-down
transformations.

These functions can then be used in convenience functions
(applyBottomUp is our equivalent of SYB’s everywhere) to apply
functions to one or more different types in a large tree:

applyBottomUp :: (Alloy (s :- BaseOp) BaseOp t,
Alloy BaseOp (s :- BaseOp) s) =>

(s -> s) -> t -> t
applyBottomUp f = apply ops

where
ops = makeBottomUp ops f :- BaseOp

applyBottomUp2 :: (Alloy (sA :- sB :- BaseOp) BaseOp t,
Alloy BaseOp (sA :- sB :- BaseOp) sA,
Alloy BaseOp (sA :- sB :- BaseOp) sB) =>

(sA -> sA) -> (sB -> sB) -> t -> t
applyBottomUp2 fA fB = apply ops

where
ops = makeBottomUp ops fA :- makeBottomUp ops fB :- BaseOp

Note that the opset is used in its own definition, because the
wrappers for the functions need to know what operations to apply
when recursing. Our type-class constraints indicate what calls to
transform need to be made, for example for applyBottomUp2:

• One call will be on the top-level type t with the full set of
queued operations (and an empty descent opset).
• A call will be made on the sA type to apply the operations to all

of its children. To force this descent into the sA type (rather than
applying the sA transformation again), we pass an empty queued
opset, but a full descent opset. This will cause all the operations
to be applied to sA’s children. If sA does not contain sB, for
example, the opset will be pruned on the next step because
therefore none of sA’s children contain sB.
• The same call will be made on the sB type.

Should the user require any further functions (e.g. applyBottomUp
with four types), it is possible to create them from the more ba-
sic functions as we have done here. It is important to note that
applyBottomUp2 f g is not guaranteed to be the same as the com-
position applyBottomUp f . applyBottomUp g (nor will it be the same
as applyBottomUp g . applyBottomUp f) unless the types that f and g
operate on are entirely disjoint. Consider:

g :: Maybe Int -> Maybe Int
g = const $ Just 3

f :: Int -> Int
f = succ

x :: Maybe Int
x = Nothing

(applyBottomUp f . applyBottomUp g $ x) == Just 4
applyBottomUp2 f g x == Just 3
applyBottomUp2 g f x == Just 3

The composition will apply the second function to children of
the result of the first – something that applyBottomUp2 will not do.

Unlike Uniplate, we do not provide a great variety of helper
functions. As well as the simple descend and apply functions ex-
plained in section 3.1, and applyBottomUp and applyBottomUp2 (and
applicative versions of each using AlloyA), the only other function
we need for Tock is a query function akin to SYB’s listify :



findAll :: (AlloyA (s :-* BaseOpA) BaseOpA t,
AlloyA BaseOpA (s :-* BaseOpA) s) =>

(s -> Bool) -> t -> [s]
findAll qf x = execState (applyBottomUpA examine x) []

where
examine y = do when (qf y) $ modify (y:)

return y

3.5 Instance Generation
Instance generation is regular and systematic. Naturally, we do
not wish users of Alloy to write instances by hand. While there
are tools, such as Derive (Mitchell and O’Rear 2009) and DrIFT
(Winstanley 1997), for generating Haskell instances (as well as
Template Haskell (Sheard and Peyton Jones 2002)), we opted to
build our own simple instance generator using SYB.

The advantage of using SYB is that no external tools or libraries
are required. SYB requires language extensions in GHC, and SYB
is supplied with GHC. We can use its traversals to discover the
necessary information (the relations between types in terms of can-
contain) to generate Alloy instances for any type that derives the
Data type-class in the standard way.

4. Use Cases
In this section, we present and discuss some of the uses we make of
generic operations. Our approach to designing our passes is guided
by the knowledge (backed up by the results in tables 2 and 3 on
page 12) that the traversal of large trees such as ours is a large time
cost which dwarfs the cost of the operation at particular nodes. We
present several use cases in the subsequent sections, discussing a
simple way to implement them, and possible efficient refactorings.
We accompany each example with some code that makes correct
use of Alloy, but that uses a simplified version of our AST.

We characterise our traversals via two orthogonal distinctions:
bottom-up (descent before transformation) versus top-down, and
depth-first (each child is processed entirely before its sibling) ver-
sus breadth-first.

4.1 Correcting Names
The occam naming rules, originally designed over twenty years
ago, permit dots in names but not underscores. In order to compile
to C, we simply turn each dot in a name into an underscore. This is
easily accomplished with our helper functions:

dotToUnderscore :: AST -> AST
dotToUnderscore = applyBottomUp doName

where
doName (Name n) = Name [if c == ’.’ then ’ ’ else c | c <- n]

The majority of the passes in Tock are implemented using
applyBottomUpA or applyBottomUpA2, but the other examples we
give here are the more interesting cases that require a different
approach.

4.2 Parallel Usage Check
The languages we compile have parallel constructs that execute
several code branches in parallel. We have a pass that checks that
each parallel construct obeys the CREW rule: Concurrent-Read,
Exclusive Write. We must check that each variable is either:

• not written-to, or
• only written-to in one part of the parallel construct while not

used at all (for reading or writing) in any others.

The algorithm is simple, once we have used our traversals to collect
sets of written-to and read-from names for each part of the parallel
construct, for which we can use a generic operation.

A straightforward implementation would be to use a generic
traversal to descend to each parallel construct – then, further
generic queries could be used to find all written-to names (by look-
ing for all elements that could be involved in writing to a name,
such as assignments and procedure calls) and all read-from names
(which can be done by just finding all other names), followed by
checking our CREW rule, and descending to find further nested
parallel constructs. This would be an implementation of an O(N2)
pass, however, with each instance of name processed once for each
parallel construct it is contained within.

We refactor our pass as follows. We perform a traversal of
the tree with explicit descent and a monad with a record of used
names. When we encounter a name, we add it to this record.
At each parallel construct, we explicitly descend separately into
each branch with a fresh blank record of names, and when these
traversals finish, we use these different name records for our CREW
check. Afterwards, we combine all these name records into the
state. In this way, we can perform one descent of the entire tree
to deal with all the nested parallel constructs. The code is:

-- Issues an error when the CREW rule is broken
checkSets :: [Set.Set String] -> PassM ()

checkCREW :: AST -> PassM AST
checkCREW x = liftM fst $ runWriterT (applyA ops x) Set.empty

where
ops = doProc :-* doName :-* BaseOpA

doProc (Par ps)
= do ns <- mapM (liftM snd . listen . applyA ops) ps

checkSets ns
tell $ mappend ns
return $ Par ps

doProc other = descendA ops other

doName (Name n) = do tell $ Set. singleton n
return $ Name n

Note that we have two cases for doProc; one to handle the
constructor we are interested in, and a default case to descend into
the children of all the other constructors. If we used applyA here we
would get an infinite loop (applyA would apply doProc again from
the opset), so we must use descendA.

Several other passes in Tock make use of this pattern: manipu-
lating/checking parts of the AST in a manner dependent on their
sub-nodes. For example: removing unused variables, pulling up
free names in procedures to become parameters, or pulling up sub-
expressions into temporary variables. The latter two are actually
rearrangements of the tree, pulling up sub-trees to a higher-level,
which we do by recording the pulled-up trees in a monad on a de-
scent, then inserting them higher up.

4.3 Adding Channel Directions
Our source languages feature communication channels. Channels
can be used with direction specifiers that indicate the writing or
reading end of a channel, but we allow these specifiers to be omitted
where they can be inferred. For example, if a channel is used in an
output statement, we can infer that the writing end of the channel is
required. The compiler must therefore infer the direction specifiers
on all uses of the channel (in our AST, a variable can be a directed
channel variable, much as we can have subscripted array variables).
Even though our interest is in modifying the variable, our traversal
must descend to the level of output/input statements, and then
further descend into the variable to see if a direction specifier is
necessary (or, indeed, if an invalid specifier has been given).

This pass illustrates two concepts that feature in other passes:



1. The concept of descent in a context is used more extensively
by our type-checker, where the processing of an inner node is
dependent on the value of a parent node.

2. Output and input statements are just two of many values a state-
ment can take. We wish to process these constructors specif-
ically, and descend further into other statements without pro-
cessing. It is typical that we only want to process one or two
constructors of a particular data type, and either descend, or ig-
nore the rest.

4.4 Directly Contains
We are often concerned with processing every element of a particu-
lar type, but we need to take care when processing types that can be
recursive. Consider the case of lists: strings, for example. A Haskell
list is a directly recursive data-type. We may want to write a func-
tion to append a prime symbol to all strings. If we blindly apply
a function like SYB’s everywhere or Alloy’s applyBottomUp with the
operation (++ "’"), we will get multiple primes added to a string;
the string "foo" technically contains four strings ("foo", "oo", "o"
and ""), and a generic traversal appending to strings, applied every-
where, will prime each of them before joining it back to the rest of
the string, resulting in "foo’’’’". This is a simple example that a
programmer should see to avoid. However, the issue becomes more
complicated with more complicated data-types.

We have a pass to pull up (hoist) array literals from expressions
into variables. In occam-π, array literals are delimited by square
brackets, much as list literals are in Haskell. We may have some
occam-π code such as:

a := doubleEach ([xs , [0,1], doubleEach ([2,3]), ys])

We need to pull up any array literals that are not directly nested
inside other array literals, yielding the new code:

temp IS doubleEach ([2 ,3]):
temp2 IS [xs , [0,1], temp , ys]:
a := doubleEach(temp2)

Note that we do not need to pull up the [0,1] literal directly
nested inside one literal (our multidimensional arrays compile to
a flattened single-dimension array) – so we do not want to blindly
pull up all array literals. We still want to pull up the array from the
inner function call, though. To deal with these sorts of issues, we
usually find the largest expression, then write some code to explic-
itly descend (ignoring directly nested array literals) and revert back
to generic descent when we encounter other nodes (such as the in-
ner function call to doubleEach). We also have to deal with pulling
up the temporaries to the nearest appropriate place:

makeUniqueTemp :: PassM Name

applyItems :: [(Name, Expression)] -> Struct -> Struct

pullUpArrayLiterals :: Struct -> PassM Struct
pullUpArrayLiterals x = evalWriterT ( doStruct x) []

where
ops = doExpr :-* doStruct :-* BaseOpA

doExpr (ArrayLit es) = do es’ <- mapM doArrayLit es
t <- makeUniqueTemp
tell [( t , ArrayLit es ’)]
return $ ExprVariable t

doExpr e = descendA ops other

doArrayLit ( ArrayLit es) = liftM ArrayLit (mapM doArrayLit es)
doArrayLit e = descendA ops e

doStruct s = do (s ’, items ) <- listen $ descendA ops s
return $ applyItems items s’

4.5 Making Names Unique
Making names unique, or ‘uniquifying’ names, is the process of re-
naming declared names to be unique in the program, and resolving
all uses of that name to match the new declared name. Thus, we
want to find declarations, and alter their name, followed by recurs-
ing down the tree to resolve all uses of that name, doing so in a
top-down manner (name shadowing is allowed!).

If names are declared in two different AST element types (as
used to be the case in Tock), we could not resolve the names cor-
rectly by resolving names for each AST declaration type separately
– a name declared in one fashion may shadow a name declared in
another fashion. So we would require one pass that operates on two
types, and could not use two passes that each operate on one type.

One way to implement name resolution non-monadically is to
search for name declarations in a bottom-up fashion, then process
the scope of the declaration to uniquify all uses of the given name.
This would resolve all names to their closest declaration, but the
run-time would be O(N2). We can avoid the use of a reader
monad for the name stack but we choose to retain a state monad
for assigning a unique suffix to the name, and the error monad for
issuing errors:

addUniqueSuffix :: String -> PassM String

uniquifyNames :: AST -> PassM AST
uniquifyNames = applyA (ops [])

where
ops nameStack
= doDecl nameStack :-* doName nameStack :-* BaseOpA

doName nameStack (Name n)
= case lookup n nameStack of

Nothing -> throwError $ "Name " ++ n ++ " not found"
Just resolved -> return $ Name resolved

doDecl nameStack (Decl n body)
= do unique <- addUniqueSuffix n

liftM (Decl unique) $
applyA (ops $ (n, unique) : nameStack) body

doDecl nameStack other = descendA (ops nameStack) other

We omit the irrelevant details of the addUniqueSuffix function.
When processing names, we look for the most recent entry on the
stack and use that as the new name. We need not descend further,
because there are no elements of interest inside Name.

For declarations, we make a unique version of the name, and
then descend into the body of the declaration with the adjusted
name stack. This example demonstrates an interesting mix of pure
programming (the name stack) and effectful programming (to get
the unique identifier for the names).

4.6 Summary
We have described several ways in which we make use of monads
in our passes. Allowing transformations to be monadic/idiomatic
is the most flexible way to augment and implement much of the
dependence involved in our passes (i.e. where one part of the
transformation depends on the results of another part).

The cost involved in descending the tree guides much of the
design of our passes, so that we traverse the tree as few times as
possible. However, for clarity of design, we stop short of combining
several passes into one (although we have considered attempting to
do so automatically).

5. Related Work
Rodriguez et al. (2008) provide a comprehensive review of generic
programming libraries, and Hinze et al. (2006a) provide a slightly
older review of generic programming approaches (including non-



library approaches). In this section we summarise the features and
approaches of various generic libraries.

Scrap Your Boilerplate (Lämmel and Peyton Jones 2003) is a
system based on dynamic type examination. Lists of operations
can be constructed, and the correct operation to apply is chosen
by dynamically comparing the type of the suspect data item to the
type of the operation. This is slow, but SYB is well-maintained and
is effectively built-in to GHC, making it easily available.

SYB with class (Lämmel and Peyton Jones 2005) reworks SYB
to allow extensible generic functions – something not all other
approaches (including Alloy) can achieve. The Spine work (Hinze
et al. 2006b) also built on SYB, transforming SYB into a more
type-theoretic approach that removed the dynamic polymorphism.

Smash (Kiselyov 2006) has an HList (Kiselyov et al. 2004)
of operations that provided inspiration for our opsets. Smash uses
static type-level techniques to compare the type of the operation
against the suspect type. Alloy includes the extra optimisation for
discarding operations by using more information about the types
involved, but does not support as many forms of transformation
and traversal as Smash.

Uniplate (Mitchell and Runciman 2007) and its related library
Biplate use type-classes instances to descend into types, looking
for the largest instances, which also influenced Alloy’s design. The
main restriction of Uniplate and Biplate is that they can operate on
only one target type – Alloy lifts this restriction to allow operation
on multiple types by using type-level opsets.

Compos (Bringert and Ranta 2008) has an explicit descent
mechanism similar to our descend function, and also allowed use
with applicative functors, much as our AlloyA class does. However,
Compos adopts a GADT approach and again lacks our optimisation
for discarding operations.

Many generics libraries focus on transforming Haskell data-
types into a simpler (and more theoretical) representation, with
special cases for primitive types ( Int and similar) and a sum-of-
products view for all other types. Both RepLib (Weirich 2006) and
EMGM (Hinze 2004; Oliveira et al. 2007) and take this approach.
This builds a layer of abstraction that simplifies traversals. The
performance of EMGM reported later in this paper demonstrates
that this layer does not necessarily come at a performance cost.

While this paper has focused on libraries for generic program-
ming, there are also several other approaches to generic program-
ming in Haskell. Template Haskell (Sheard and Peyton Jones 2002)
allows code to be run by the compiler, using compiler-level in-
formation on types and other aspects of the program to generate
further code before compilation continues. EMGM uses Template
Haskell to generate instances, but Template Haskell could equally
be used to generate traversal code. There are also language ex-
tensions such as PolyP (Jansson and Jeuring 1997) and Generic
Haskell (Clarke and Löh 2003), as well as external tools such
as DrIFT (Winstanley 1997) and Derive (Mitchell and Runciman
2007), but as stated earlier we required a library-level approach.

6. Benchmarks
Our primary motivation for creating Alloy was to increase the speed
of our generic traversals, and in this section we describe some
benchmarks and analyse the results. We have used only transfor-
mations in our benchmarks: this is the majority of use in Tock, and
frequently used elsewhere too (Rodriguez et al. 2008).

We first tried using the GPBench generic programming bench-
marks (http://www.haskell.org/haskellwiki/GPBench) but
found that those did not sufficiently distinguish the different ap-
proaches. Instead, we used the following benchmarks, taking data
from Tock to provide larger-scale benchmarks:

• BTree: Common binary tree data structure, with a transforma-
tion that alters the value at each leaf node. There are only two
types: the binary tree, and the leaf type. Data instances are per-
fectly symmetric, with a given depth.
• OmniName: The real AST structure from Tock, using parsed

existing compiler tests as input data values, transforming every
Name item in the AST.
• FPName: The same AST structure, but only transforming

Names that are function calls or procedure calls (requires ex-
amining three types).

Our expectations with respect to Alloy were that its worst rel-
ative performance would be on the BTree example (homogeneous
data-type, everything can contain the target type), with mid-level
performance on OmniName, and best relative performance on FP-
Name, since this involves traversing less of the tree than Omni-
Name (an optimisation that will not be spotted by the other ap-
proaches).

Although Alloy was written to be faster in Tock, there is no
Tock-specific code in Alloy that confers it an advantage in the
latter two benchmarks. We believe that using a real example of a
complex tree structure will give the best idea of real performance
of the techniques.

We chose to benchmark Alloy against SYB (Lämmel and Pey-
ton Jones 2003), Smash (Kiselyov 2006) and EMGM (Hinze 2004;
Oliveira et al. 2007). Uniplate (Mitchell and Runciman 2007)
would not support the FPName benchmark, and thus we did not
test it. Uniplate, EMGM and Smash were indicated by Rodriguez
et al. (2008) to be the fastest generics approaches, and we include
SYB due to its popularity and it being the approach that we have
replaced with Alloy in Tock.

6.1 Modifications
After some initial explorations with simple implementations of the
benchmarks for each approach, it was clear that Alloy was an
order of magnitude faster than the other approaches. We knew from
experience why this was. Our AST data structure is filled with
Strings – variable names, function names, source code filenames,
and so on. Naı̈vely applying generic approaches such as EMGM,
Smash and SYB leads them to descend into every character of
every String , attempting to apply transformations. Alloy naturally
avoids this due to its optimisation to discard operations that cannot
be applied – when processing a String , all operations not targeted
at String or Char will have been discarded, which in practical terms
means Strings are never descended into. We felt it realistic to add
special cases to EMGM and Smash and SYB that skip over Strings,
as we did with SYB in earlier versions of Tock. Thus, EMGM and
Smash both have standard versions (without this special case) and
modified (with this special case). The performance of SYB (both in
terms of speed and memory) without this special case was such that
we were unable to complete the benchmarks, so SYB only features
with this special case.

6.2 Parameters
Rodriguez et al. (2008) found that the performance of generics
benchmarks were sensitive to differing compiler versions and opti-
misation levels. We aimed to compensate for this difference by test-
ing two compiler versions (GHC 6.8.2 and 6.10.1), each with three
optimisation levels (O0, O1 and O2) and used statistical analysis to
try to abstract from these differences to get an overall measure of
how performance differed by generics approach.

For the OmniName and FPName benchmarks, we used ten dif-
ferent ASTs taken from an occam compiler test suite that predates
Tock. We first timed (wall-clock time) five instances (per com-
bination of approach/compiler/optimisation/AST) of applying the



Factor Levels OmniName FPName BTree
EMGM / Alloy 1.57 1.32 0.72
Smash / Alloy 1.91 2.17 1.06
Smash / EMGM 1.21 1.64 1.46
Opt 1 / Opt 0 0.61 0.56 0.52
Opt 2 / Opt 0 0.61 0.56 0.51
Opt 2 / Opt 1 0.99 1.00 0.99
GHC 6.10 / GHC 6.8 0.92 1.07 1.08

Table 1. The relative difference in the factors according to separate
fitted generalised linear models for each benchmark. For example,
the linear model indicates that Smash took 1.91 times as long
as Alloy to complete the OmniName benchmark, discounting the
effect of other factors.

operation a fixed number of times (50) and forcing evaluation of
the output, with the following approaches (the difference between
modified and standard is explained in section 6.1):

1. Alloy

2. Smash (modified implementation)

3. EMGM (modified implementation)

4. SYB (modified implementation)

5. Smash (standard implementation)

6. EMGM (standard implementation)

It was apparent after running these benchmarks that approaches
4–6 were considerably slower than 1–3 (see tables 2 and 3 on
page 12), and thus we only used approaches 1–3 in a subsequent
experiment where we measured 30 instances of each combination
(this showed no difference in means than our original run, but had
a smaller standard error, allowing us to be more confident in our
results).

For the BTree benchmark, we used a symmetric tree of height
14, and timed 50 instances (per combination of approach/compil-
er/optimisation) of applying 100 increments on all leaves in the
tree. The results are shown in table 4 on page 12.

6.3 Analysis
There was no guarantee of a relationship between a technique’s
performance on one benchmark and its performance on another.
Therefore we analysed each benchmark separately. For the AST
benchmarks (OmniName and FPName), our dependent variable
was the time measurement, and our four independent variables
were: generics approach, compiler version, optimisation level and
AST input. The last factor was included because the ASTs varied
greatly in size, and thus we could not meaningfully directly com-
pare results across the different ASTs, such as averaging the time
taken across the ASTs. Note that in this section, for OmniName
and FPName we only discuss the analysis of the three fastest ap-
proaches (Alloy, EMGM modified and Smash modified that were
run 30 times).

We performed an initial analysis using a four-way (3× 2× 3×
10) analysis of variance (ANOVA). This revealed that all factors
had significant main effects, and all the interactions4 of factors were
also significant (significance at the 1% level, all p-values < .001).
This is because our benchmarks are deterministic, and thus the
variance is primarily measurement error, differences in cache state
and similar.

We primarily wish to compare the performance of the three
remaining generics approaches to each other. To do this, we fitted a

4 An interaction is a difference in the effect of a given factor as a function
of the level of another.

generalised linear model to our data, which assigns to each level of
each factor a weight that describes how many seconds that factor
level adds/subtracts from a baseline. The absolute values are of
little interest; instead we look at the relative difference between the
levels. The values of the differences can be seen in table 1 (without
the factors for task input, which are not of interest).

Table 1 is thus the most concise summary of all our results. This
tells us that Alloy is around twice as fast as Smash on our AST-
based benchmarks, and offers similar performance in the binary
tree example. EMGM is around a third to a half slower in the AST
benchmarks, but a quarter faster in the binary tree example. These
figures include the String optimisations for EMGM and Smash (in
the AST examples).

6.4 Compiler Versions and Optimisation Levels
Our analysis of variance revealed that there is a statistically sig-
nificant interaction between approach, compiler and optimisation
level. Figure 4a (page 12) illustrates this for one task input to the
OmniName benchmark. It can be seen that GHC 6.10 is not always
better than GHC 6.8 – EMGM in particular is much slower in the
newer compiler, and Alloy too. Optimisation level 1 usually offers
a big improvement over no optimisation (level 0), but optimisation
level 2 is only sometimes better than level 1 – this is noted in the
GHC 6.10 user manual: “At the moment, -O2 is unlikely to produce
better code than -O1.” This is backed up for the BTree example in
figure 4b (page 12) and by the figures in table 1.

It can be seen in table 3 (page 12) that in GHC 6.8 at optimisa-
tion level 1, EMGM and Alloy have the same performance (a t-test
confirms there is no significant difference between the two at the
5% level), but this is not true in GHC 6.10, where Alloy has be-
come faster, and EMGM slower. This illustrates some of the effect
compiler and optimisation can have – but, broadly, the compiler and
optimisation levels did not affect the ranking of the approaches.

6.5 Discussion
Our benchmarks showed that for the AST-based benchmarks, Alloy
was faster than the other approaches – although close enough to
EMGM that the difference may not matter for many users. The
benchmarks confirmed that SYB was an order of magnitude slower
than the other approaches on the AST-based benchmarks (see tables
2 and 3). For homogeneous types, Alloy is not the fastest (and
probably not the most suitable, either), while SYB has less of a
performance gap (see table 4).

Unexpectedly, the gap between EMGM and Alloy was narrower
on FPName (see table 1) where we had expected Alloy to be
the clear winner. The FPName benchmark took around the same
amount of time in Alloy as the OmniName benchmark – it took the
same amount of time to process all the names at specific places in
the AST than it did to process all the names. It is possible that the
cost of having three types in our opset counterbalanced the savings
of being able to discard those operations. One of the target AST
types, Expression, occurs throughout the tree very frequently, so this
may have also contributed to the lack of savings for Alloy.

7. Opening the Closed World
There are several issues with the design of Alloy as described thus
far, stemming from one cause: for each type, Alloy requires in-
stances for all the types contained and not contained within it. Con-
sider the type-relation table shown in figure 3a for the following
types:

data Foo = Foo Int Int
data Bar = Bar1 Foo | Bar2 Baz
data Baz = Baz1 Foo | Baz2 Bar



(a) (b) (c)

Figure 3. Type-relation squares for (a) four types, (b) with a fifth type added, requiring nine new instances, and (c) the same square with
overlapping instances. A ‘c’ indicates the row-type contains the column-type, an ‘n’ indicates the row-type does not contain the column-type,
and an ‘=’ indicates type equality.

Each row in the figure corresponds to a type-suspect. If the type-
suspect contains the type at the top of a column, a ‘c’ is present.
An ‘n’ indicates the type-suspect cannot contain the column type,
and the equals signs on the leading diagonal show where the types
match. Each entry in the type-relation square will have a corre-
sponding instance (the row-type being the type suspect, and the
column-type being the operation type of the head of the opset).

WithN types, this means there will beN2 instances. This large
number of instances is the first problem. It can also be seen that
adding further types at a later date (perhaps generated by someone
using the original types in a library) requires several new instances.
To add a new type, one must supply not only the instances for the
types contained with the new type, but also the instances for all the
existing types (that the new type is not contained within). Consider
the extra type:

data Quux = Quux Foo

The new type-relation square can be seen in figure 3b, and the
user must add all the shaded types: both the bottom row regarding
types contained in Quux, but also the right-hand column with all the
instances stating that Quux is not contained by any of the existing
types. If Quux is added on later in a separate module, it is inherent
that Quux cannot be contained in any of the original types, so this
new column will always be filled with ‘n’ instances (ignoring the
equals instance). Having to add all these instances is a second
problem.

Both of these problems can be solved by the use of the overlap-
ping instances Haskell language extension. Overlapping instances
allows us to still have specific instances for all the cases where the
current type matches, or is contained within the type of the latest
operation, but then allows us to provide a single generic instance
for the not-contained-within case:

instance Alloy opsDescent opsQueued =>
Alloy opsDescent ( t :- opsQueued) where

transform opsDescent ( :- opsQ) x = transform opsDescent opsQ x

This instance means that adding a new type only requires adding
(at most) half the previous number of instances, and in general the
number of instances is greatly reduced. Consider the new type-
relation square in figure 3c, where all the ‘n’ decisions have been
replaced with empty squares (they are covered by our overlapping
instance). The number of instances is almost halved. In Tock, with
this overlapping instance we generate around 5200 instances –
without it, we generate around 13000.

It can be seen that adding Quux requires only instances for the
types contained within Quux, and no more. This transforms our

approach from a closed-world system into more of an open-world
approach where new types can easily be added on later. It also
reduces compilation times (see section 8.1 for more discussion of
this issue).

8. Conclusions
We presented a new generics approach, Alloy, whose development
and design was motivated by our use of generics in a compiler. Al-
loy is a powerful and fast library that can be used in any application
where transformations and traversals of large complex data struc-
tures are required.

Our benchmarks confirmed that the generics approaches closest
in performance to our own (that had to be optimised slightly for
the application) are 30–100% slower than Alloy on large heteroge-
neous data types, and showed that SYB is around 3000% slower.
Alloy’s advantage is eliminated on more homogeneous data types.
We showed that our results persist across compiler version and op-
timisation level, suggesting that generics comparisons are perhaps
not as sensitive to these factors as previously thought.

We described use cases for generics in our compiler, and ex-
amined how they need to be rewritten to ensure that the number
of passes required is kept to a minimum. On large tree structures,
the time taken by the traversals outweighs the processing at each
node. In our compiler, Tock, switching from (an augmented and
optimised) SYB to Alloy approximately halved our entire compile-
time for occam-π code (which includes parsing and code genera-
tion), giving a strong indication of where much of the time is spent.

8.1 Limitations and Future Work
Most generics approaches require an instance to be generated per
type. In Alloy, the number of instances is proportional to the square
of the number of types (see section 7 for more details). Our im-
proved performance at run-time comes at a cost at compile-time.
GHC takes in the order of five to ten minutes to compile our thou-
sands of generated instances. These instances are only re-compiled,
however, when our AST type changes – which is very infrequently
compared to how often we compile the compiler. For projects that
have complex types that change often, this is a drawback to using
Alloy and reveals a potential limitation for the scalability of our
particular approach, even with the overlapping instances improve-
ment detailed in section 7. In future we would like to investigate
ways to alleviate this problem.

Some of the passes in Tock operate on only one constructor of
a type; it descends into all the rest to continue the traversal. Sev-
eral generics systems have support for special cases for particular
constructors, but Alloy does not. We could perhaps alter the opsets



so that an operation could either be a transformation on a whole
type, or a particular case for a constructor. It is unclear whether this
would bring benefits, either in speed or in terms of code clarity.

Our AST contains one polymorphic type, Structured , which sup-
ports name declarations surrounding an inner type. Structured is
used with seven different types as a parameter at various places
in our AST. Some functions, such as those modifying name dec-
larations, operate on all the different variants of Structured , while
others are only interested in manipulating one specific Structured
instance. Currently, our only support for manipulating all variants
of Structured is to instantiate the operation for all variants and put
all of them in an opset. In future we would like to investigate neater
and more efficient solutions to this problem.

8.1.1 API
Our API was originally based on SYB (:-* is akin to extM). When
we began developing Alloy, Tock was already using SYB-based
traversals so keeping the API similar to SYB was advantageous
in order to ease the transition. Our API can be contrasted with
Uniplate’s API (Mitchell and Runciman 2007), which is of the
form:

class Uniplate a where
uniplate :: a -> ([a], [a] -> a)

The uniplate function takes a data item, and gives back a list of
all the largest sub-elements of that type, along with a function that
can take a corresponding list (same length, same order) of values,
and reassemble them back into the original item.

The immediate problem with Alloy compared to Uniplate is that
multiple types are involved. Still, if we use type-level programming
to transform an opset into a corresponding type-level list of types,
we could add a front-end class such as:

class ConvertOpsToTypes ops ts => Alloy ’ t ops where
transform :: t -> ops -> ( ts , ts -> t )

The instances would need a little alteration so that when an
operation is dropped from the opsets, an empty list is put at the
correct point in the return type.

8.2 Further Details
The alloy library is already available on Hackage, the Haskell
package repository (http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/alloy). We hope to be able to re-
lease our benchmarks, ideally as a contribution to the GPBench
(http://www.haskell.org/haskellwiki/GPBench) generic
programming benchmarks.

8.3 Haskell Extensions
The core idea of Alloy requires a few extensions to the Haskell lan-
guage (available in the commonly-used GHC compiler). The first
is multi-parameter type-classes, and the others are undecidable in-
stances, which allows our type-class recursion (with a correspond-
ing increase in GHC’s context reduction stack), as well as flexible
contexts and flexible instances for the same purpose, and infix type
constructors for our opsets. Multi-parameter type classes and infix
type constructors have been accepted for the next Haskell language
standard (currently titled Haskell Prime), and the other extensions
remain under consideration.

This set of extensions is increased by the use of overlapping
instances, although they are not essential for our library. Instance
generation takes advantage of GHC’s support for automatically de-
riving the Data type-class, but instances could instead be generated
by other external tools.

All of these language extensions are pre-existing and have been
supported by GHC for many major versions.
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Figure 4. Effect of compiler and optimisation for each approach in (a) the OmniName benchmark and (b) the BTree benchmark. Each
approach has two sets of three bars; the left-hand set is GHC 6.8, the right-hand set is GHC 6.10. Each set contains a bar per optimisation
level. Each approach has its times (lower is better) normalised to GHC 6.10, Opt. Level 1, so numbers can only be compared within
each approach. There is little difference between optimisation levels 1 and 2 for any approach, but they both show an improvement over
optimisation level 0. Speed differs little by compiler version, except that EMGM was much faster under GHC 6.8 at optimisation levels 1
and 2 in OmniName, and in the BTree benchmark Smash and Alloy were slightly faster (at optimisation levels 1 and 2) in GHC 6.8.

Compiler Optimisation EMGM Mod. EMGM Std. Smash Mod. Smash Std. Alloy SYB Mod.
GHC 6.8 Opt0 3.448 (0.067) 20.669 (0.364) 4.963 (0.056) 34.394 (0.675) 1.536 (0.013) 49.309 (0.275)

Opt1 1.259 (0.007) 15.832 (0.096) 1.703 (0.015) 6.323 (0.010) 0.730 (0.005) 16.559 (0.233)
Opt2 1.266 (0.007) 16.278 (0.136) 1.690 (0.017) 6.334 (0.011) 0.627 (0.005) 19.180 (0.061)

GHC 6.10 Opt0 3.526 (0.047) 19.894 (0.143) 5.128 (0.045) 32.101 (0.420) 1.542 (0.012) 53.937 (0.122)
Opt1 2.096 (0.020) 17.183 (0.165) 1.432 (0.029) 6.760 (0.016) 0.864 (0.015) 17.633 (0.140)
Opt2 2.085 (0.022) 14.930 (0.087) 1.833 (0.032) 6.754 (0.021) 0.848 (0.011) 18.756 (0.074)

Table 2. An illustrative table of results for one of our test inputs for the OmniName benchmark. Means are wall-clock times (measured in
seconds) for 50 traversals, followed in brackets by standard deviations.

Compiler Optimisation EMGM Mod. EMGM Std. Smash Mod. Smash Std. Alloy SYB Mod.
GHC 6.8 Opt0 3.123 (0.058) 19.189 (0.344) 5.948 (0.074) 39.748 (0.965) 2.066 (0.009) 105.791 (0.548)

Opt1 0.983 (0.018) 13.118 (0.352) 1.692 (0.049) 6.541 (0.102) 1.013 (0.057) 22.826 (0.055)
Opt2 1.106 (0.028) 14.169 (0.453) 1.598 (0.056) 6.620 (0.131) 0.598 (0.013) 21.986 (0.170)

GHC 6.10 Opt0 3.219 (0.039) 20.596 (0.152) 5.926 (0.042) 34.415 (0.610) 2.068 (0.013) 109.272 (0.486)
Opt1 1.560 (0.017) 14.891 (0.152) 1.600 (0.018) 7.056 (0.082) 0.859 (0.006) 17.636 (0.051)
Opt2 1.432 (0.013) 13.377 (0.092) 1.813 (0.010) 6.896 (0.077) 0.845 (0.003) 19.007 (0.026)

Table 3. An illustrative table of results for one of our test inputs for the FPName benchmark. Means are wall-clock times (measured in
seconds) for 50 traversals, followed in brackets by standard deviations.

Compiler Optimisation EMGM Smash Alloy SYB
GHC 6.8 Opt0 1.488 (0.025) 2.152 (0.027) 2.112 (0.025) 9.214 (0.074)

Opt1 0.793 (0.015) 0.868 (0.012) 0.916 (0.022) 3.603 (0.038)
Opt2 0.796 (0.017) 0.905 (0.017) 0.854 (0.022) 3.668 (0.049)

GHC 6.10 Opt0 1.543 (0.019) 2.245 (0.017) 1.999 (0.016) 9.798 (0.056)
Opt1 0.810 (0.009) 1.058 (0.010) 1.021 (0.018) 3.484 (0.029)
Opt2 0.813 (0.010) 1.054 (0.012) 1.019 (0.025) 3.481 (0.031)

Table 4. The results for the BTree benchmark for all four generics approaches. Means are wall-clock times (measured in seconds) for 100
traversals, followed in brackets by standard deviations.


