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Abstract. Complex systems are often simulated to provide a
basis for research or analysis. However, complex systems simu-
lation often fails to properly demonstrate that the constructed
simulation is an adequate tool to support investigation of the
system under study. To address this issue we adopt and adapt
argumentation techniques traditionally used for safety critical
systems (SCS). Here we present part of an on-going case-study
in which these techniques are used to demonstrate that two dif-
ferent implementations of a complex system simulation are ad-
equately equivalent. This is a first step in producing further
simulations of the system under study, which will be shown to
be valid models on which to explore particular ecological phe-
nomena.

1 Introduction

This paper presents part of a case study that is using a principled ap-
proach to computer simulation of a complex system. The work is part
of the CoSMoS project3, which is developing a general framework for
the simulation of complex systems using agent-based approaches. One
of our long-term goals is to argue the validity of complex systems sim-
ulations against domain models that capture an explicit expression of
scientific understanding. More generally, we want to present properly-
evidenced arguments that one model is an adequate representation of
another model, or a particular perspective on reality. Such arguments
form the basis for discussion between the simulators and the domain
experts, and capture the rationale for the simulation, in terms of both

3 http://www.cosmos-research.org
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the domain understanding of the science, and the engineering of the
simulation – see [2, 19] for further discussion. We believe the ability to
argue properties of a complex system simulation (such as equivalence
or validity) is an important element of CoSMoS and any other similar
approach.

In this case study, a first step is to re-engineer a simulation of intra-
specific plant variation [6]. The existing object-oriented simulation, in
C++, needs to be scaled-up to support the scientific research. Else-
where, we discuss the use of occam-π for efficient, process-oriented par-
allel agent-based simulation [17]. A number of recent complex systems
simulations [5, 23, 24, 29] have successfully used this programming lan-
guage. Here, we will ultimately exploit parallelisation to distribute the
occam-π simulations over a cluster of machines [22]. This will allow us
to simulate larger numbers and variations of plant, and a greater range
of environmental influences than is possible in a purely sequential imple-
mentation.

The re-engineering is supported by construction of an argument that
the occam-π simulation is adequately equivalent to the original C++ sim-
ulation. We call this an equivalence argument. The description of this
argument forms the main subject of this paper. The original C++ sim-
ulation was used in ecological research that has some credibility within
its research community, and through the equivalence argument we can
support a claim that our re-implementation should share that credibility.
Thus, our definition of adequate equivalence must make a case that the
simulations capture equivalent aspects of the scientific domain, rather
than simply presenting evidence of the technical equivalence of the two
programs. Our argument is acceptable if the scientists – here represented
by the person who has overseen the C++ simulation effort, James Bown
(referred to subsequently as the scientist) – accept the argument that
we have captured equivalent aspects of the scientific domain.

The paper continues with a brief introduction to argumentation tech-
niques and their relation to simulation validity, section 2. Section 3 then
describes the plant ecology case-study. Section 4 considers what ade-
quately equivalent means and shows how we can build an explicit, struc-
tured argument of adequate equivalence for the two simulations. Section
5 gives examples of the required evidence from the simulations, to sup-
port the argument presented in section 4. The paper concludes with a
discussion, section 6, conclusions and proposals for future work.
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2 Argumentation and Complex Systems Validity

Elsewhere, we summarise current scepticism about the ability of com-
puter simulations to adequately support scientific research (see [18], and
cited work, [7, 8, 15, 16, 30]). In [2, 19], we report on an immunological
case study undertaken in conjunction with immunologists, in which we
found that a systematic collection and exposure of assumptions, made
by the immunologists in relation to the scientific domain and by us as
modellers and simulation-engineers, helped the immunologists to under-
stand the value and limitations of our simulations. This understanding
meant that the immunologists could use even basic agent-based models
to test their understanding and guide their laboratory experiments; the
documented assumptions gave rise to new avenues of scientific research.
Here, we follow a suggestion in [19], and turn to conventional techniques
from critical systems engineering, to start the process of systematising
the use of arguments to capture and analyse evidence and assumptions.

In critical systems engineering, arguments are used to demonstrate
a case to regulators that a system has certain properties, most com-
monly properties related to safety. In critical systems, it is impossible
to absolutely demonstrate properties such as safety; instead evidence is
collected based on criteria such as use of accepted development practices,
software, system and sub-system testing, mechanical analysis, past ex-
perience or cumulative usage outcomes, and field trials. The evidence is
used to support an argument that the risk associated with the system
is As Low As Reasonably Practicable (ALARP), within the operational
environment for which the system is designed. A general approach to
constructing and documenting safety cases can be found in Kelly [10],
whose other published research includes a range of studies and applica-
tions of critical systems argumentation. For an example of safety case
creation for a – hypothetical – complex system, see [1].

2.1 Argumentation in Safety Critical Systems

Early safety-critical systems were unregulated, and were potentially gro-
ssly unsafe [12]. Consequent deaths and damage costs from, for instance,
industrial and vehicle accidents, led in time to regulation, part of which is
usually certification. Potentially-dangerous systems are allowed if there
is sufficient evidence that they would be safe to operate. For a long
time, evidence was based on process – “I have followed good engineering
practice, so my system is safe”. This approach is unsatisfactory in many
ways, not least of which is its limiting of engineers to use only approved
processes, thus inhibiting innovation.
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A significant improvement in safety management came with product-

based certification. Independent regulators are appointed, who set the
safety criteria that a system must meet, in terms of specific evidence
requirements. Developers collect evidence, and tie it together by means
of a structured argument known as a safety case. It is still possible to
cite an approved process as evidence, but this evidence is relegated to
an appropriately-subordinate role. A safety case is accepted or rejected
based on independent review of its arguments and evidence. Acceptabil-
ity is not an absolute, and can change over time, in the light of experience
or new evidence. This presents an important parallel to scientific inves-
tigation, particularly in biological domains, where the understanding of
complex natural systems is a developing area, with much debate and
many competing theories.

2.2 Summarising the Structure of an Argument: GSN

Safety cases were conventionally presented as free text, which is easy to
create and immediately readable, but hard to systematically review. As
Kelly [10] notes, not all safety engineers are gifted writers, and free text
safety cases are often ambiguous. Construction and review of cases is im-
proved if the structure of the argument and evidence can be summarised,
for example using the Goal Structuring Notation (GSN) [10, 31]. Exist-
ing examples and patterns for GSN are predominantly concerned with
safety cases.

GSN is a graphical way to express argument structures. A GSN dia-
gram shows a hierarchy from the top-level claim – a typical safety case
might seek to establish that The system is safe – down through sub-
claims that support that claim (e.g. The hazard ‘loss of temperature

control’ will not occur) and eventually to the evidence supporting those
claims (e.g. Software test results for component X show no faults). Any-
body using GSN is guided by the rules of the notation, which helps to
avoid gross errors of logic.

It is important to understand that GSN as a notation is of limited
value – it is the argumentation culture and the safety-case literature
that gives it its power in the safety field. Similarly, it would be a cul-
ture of argued validation that would be most important in addressing
the criticisms (noted above) of complex systems simulation for scientific
research.
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2.3 Adapting Argumentation for Scientific Simulation

Validity

When a computer simulation is used in a scientific study, the user of
a simulation needs to demonstrate the extent to which the computer
simulation matches reality (and other models). Traditionally, these ar-
guments have been, at best, informal discussions in papers and reports.
This causes many problems. Evidence or detail is omitted, making it diffi-
cult to assess the validity of simulation results. In an attempt at clarity,
many arguments are reduced to vacuous or partial claims. There is a
need to improve the quality and presentation of validation arguments;
GSN is an obvious candidate for constructing argument structures and
recording the evidence that supports (or could support) the argument.

Whilst there is a range of work on the validity in simulation, for
example [25, 26], we are not aware of any existing work on structured
arguments of computer simulation validity.

In safety analysis, the safety properties and the case for safety are
normally created and rehearsed by the developers before the argument
is constructed and represented in GSN. There are few specific argument
construction methods, and experience shows that, whilst a top-down ap-
proach is impractical because it requires oversight of the body of evidence
before the top-down structure can be identified, a bottom-up approach
risks losing sight of the point of the argument.

The argumentation that we require for simulations is somewhat dif-
ferent to safety case argumentation, in that we are constructing argu-
ments in parallel to simulation development, and can use the top-down
construction of the argument to guide development. Similarly, we do not
have a regulator dictating what is and is not acceptable evidence, but
instead we have a scientific collaborator who must be able to under-
stand and review our argument. In this paper, the goal is to demon-
strate that two simulations are adequately equivalent. Our argument
proceeds by analysing and recording what we will accept as evidence
of adequately equivalent. We then establish this evidence by systematic
analysis, recording the result as a GSN argument structure. First, we
briefly introduce the intra-specific plant variation domain and the exist-
ing C++ simulation.

3 The Example: Intra-specific Plant Variation

Simulations

The work presented in this paper is the first phase of a case study to
provide computer simulations to support extensions to the ecological



106 Ghetiu, Alexander, Andrews, Polack and Bown

research of Bown et al [6], based on their novel model of plant physiology
and interactions, based on physiological traits.

In [6], computer simulation is used to demonstrate that defining
plants in terms of a suitable set of traits yields results that are acceptable
to the ecological community, for example, the model produces species-
area and species-abundance distributions that have typical characteris-
tic statistical signatures (curves) [20]. However, the existing simulations
are limited in the number and complexity of components that can be
modelled, even if the implementation and platform were fully optimised,
because of the difficulty of distributing a C++ program.

3.1 Ecological Modelling and Plant Trait Models

Begon et al define ecology as the “scientific study of the distribution and
abundance of organisms and the interactions that determine distribution
and abundance” [4]. The “holy grail” of ecology [11] is to find general
rules that relate environmental conditions, species characteristics and
community composition.

To complement field experiments, ecologists attempt to capture ob-
servational patterns and behaviours in models. At one extreme, equation-
based models (EBMs) focuses on characteristics of the plant population
as a whole, while at the other extreme individual-based models (IBMs)
that allow for some of the individual variations within and between
species. IBM is the more appropriate technique for study of intra-specific
variation, and has the advantage that IBM individuals can map directly
to and from real plants, so biological understanding can be mechanisti-
cally reflected in computer models. However, a computer model cannot
hope to express all the characteristics of a real plant. A popular eco-
logical technique is to summarise the characteristics of a plant in terms
of numerical traits, with much ecological research to establish the most
appropriate traits and value-ranges. Traits typically characterise visible,
phenotypical properties such as shoot height, as well as ongoing bio-
logical processes such as water uptake capacity. A good model has rich
informational content built using traits whose validity is supported by
the direct mapping to biological data.

Ecological research has shown that trait trade-off is important in ex-
plaining the distribution and abundance of ecological communities [28].
Computer-based IBMs that model plants in terms of traits play a key role
in this research. However, the models do not always map well to research
goals, and it has been shown that the identification and representation
of traits has a significant influence on the simulation results [13, 21].
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Trait Description

Essential uptake Amount of resources that a plant needs for nor-
mal development without reproduction

Requested uptake Amount of resources that a plant will request to
support development and reproduction.

Spatial distribution of up-
take

Uptake capacity of a plant with respect to the
distance

Compartment partition Resource allocation ratio of structural compart-
ment to structural store

Structural store release
proportion

Proportion of structural store that can be re-
leased

Surplus store release pro-
portion

Proportion of surplus store resource that can be
released

Time dependent reproduc-
tion

Time needed before initiating reproduction.

Development dependent
reproduction

Resource level needed to initiate reproduction

Storage/fecundity relation Ratio of the resource available for reproduction
to the resources necessary for creating a seed

Seed dispersal pattern Radius of the area of local seed dispersal

Survival threshold Minimal resource level for plant survival

Survival assessment period Number of consecutive timesteps over which the
resources level can be below the survival thresh-
old before the plant dies

Table 1. Bown et al’s twelve plant traits [6]

3.2 The Computer Simulation of Bown et al

The intra-specific plant variation models of Bown et al [6] uses an IBM
based on a resource-centric physiological scheme [27]. The model allows
the study of the relationship between trait trade-off and the distribution
and abundance of species.

Firstly, Bown et al [6] establish twelve traits (table 1) that adequately
describe plant physiology. The plant species is described by a set of twelve
distributions, one for each of these traits. The distributions determine
the probability of each trait value across the set of plants, with individual
trait values assigned to achieve the species distribution. This approach
gives appropriate intra-specific variation.

In the model of Bown et al [6], a plant individual is modelled as
a phenotype and a genotype, figure 1. The phenotype consists of ap-
propriate representations of the resource storage and usage of a plant:
the structural compartment represents resources corresponding to the
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Trait 1 Trait 2 Trait 6Trait 5Trait 4Trait 3

Trait 12Trait 11Trait 10Trait 9Trait 8Trait 7

compartment

Surplus 

store

Structural Structural

store

Age
Resourse

areauptake

Development

stage

Genotype

Phenotype

Fig. 1. Bown et al’s model of an individual plant [6]

plant’s fixed structure; the structural store holds resources that are used
for reproduction; and the surplus store represents any excess of resource-
uptake over the level essential to maintain the plant. In addition, the
phenotype records age and development stage. In the genotype, a value
is assigned to each of the twelve species traits, using a random sampling
of the trait distribution to introduce intra-specific variation. Trait value
distributions were obtained from field observations of the Rumex acetosa

plant species [3].

Four biological processes drive the generic life-cycle of a plant: re-
source uptake, resource allocation, reproduction and development, as
shown in figure 2. In the model, each plant takes up resources from the
environment and allocate it to the three resource components of the
phenotype. As resource is accumulated, the plant develops, which is de-
noted by incrementing the Development stage in the phenotype. Four of
the trait values are related to a plant’s development stage: spatial distri-

bution of uptake, development dependent reproduction, and the two uptake

traits.

There is an initial population of plants. When a plant reproduces
the distribution of seeds is controlled by the seed dispersal pattern trait.
A seed is only viable if it lands at a valid location that does not con-
tain a plant. In [6], reproduction is clonal, so a seed has the same trait
values as its (single) parent plant. The Reproduction process may be trig-
gered according to the trait value for time dependent reproduction or for
development dependent reproduction.
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Fig. 2. State machine model of the biological processes of Bown et al [6]:
ellipses represent the states of the plant associated with each biological process,
and arrows represent possible transitions between theses states; the plant is
created in the Resource uptake state and must be in the Resource allocation

state when its death is determined

The environment is represented by a single type of resource, which
is distributed evenly across its surface. The resource level has an upper
limit defined by a saturation level. The flow or resource to plants is con-
strained by release and replenishment rates, which specify the maximum
quantity of resource that can be released or added to the environment
at any time. In the computer simulation, the environment is modelled
on a two-dimensional grid. Bown et al [6] note that a cell represents an
area of approximately 100cm2, which, in the model, can be occupied by
at most one plant. The number of plants that take resource from a cell is
determined by the location of each plant and its root area, as represented
by the spatial distribution of uptake trait. Grid cells contain a resource
substrate, which is parametrised by the saturation level and the release
and replenishment rates.

A timestep in the simulation represents one day in the real-world.
Accordingly, the values that are used for parametrisation of the model
reflect the resource flow through a plant during one day [6].

In order to compare the trait-model intra-specific results to inter-
species distribution results, Bown et al [6] introduce 75 individual plants,
which are treated as representing 75 different species. Because the model
uses clonal reproduction, these 75 species either persist and increase in



110 Ghetiu, Alexander, Andrews, Polack and Bown

numbers, or die out. A simulation run lasted for 50 000 timesteps, which
corresponded to around 1250 generations of plants. The simulation was
run over different environment sizes (grids of 10×10 up to 50×50 cells)
to collect statistics on the relationship of the size of the environment to
the number of species co-existing (the species-area curve), and to the
abundance of each species (the species-abundance curve).

3.3 The C++ and occam-π Simulations

Bown et al [6] use a mechanistic model of plants through which com-
munity level processes can be studied. We have re-implemented the sim-
ulation in occam-π, but in order to use our simulation to scale up the
original experiments, we need to show that the new simulation is still
based on the same underlying biological model.

The C++ simulation code is sequential, running on a single thread of
execution. The model uses two passes per timestep to reduce sequential
bias. For example, for resource uptake, all plant demands are made in
the first pass, then, in a second pass, each plant receives a normalised
percentage of the quantity it requested – where the total demand on a
grid cell is more then the cell can release then each demand is reduced
accordingly. The limitation of running on a single thread constrains the
size of the environment and population that can be used in this simulator,
which cannot handle the real-world scale of several hectares containing
millions of plants.

A traditional re-engineering approach would create an abstract model
of the data and processing implemented in the C++ simulation, and then
re-develop this model in occam-π. This would, in theory at least, allow
formal refinement relations to be established between each implemen-
tation and the abstract model, and a formal proof of equivalence. In
practice, whilst model-driven engineering provides semi-formal transfor-
mation approaches to move between object-oriented models at different
levels of abstraction, the potential for formal refinement between ab-
stract models and object-oriented code is limited. Furthermore, having
extracted an abstract model from the object-oriented code, there is no
established way to refine this model into the process-oriented occam-π

language – occam-π is formally underpinned, but by CSP [9], an event-
driven formal language.

If a formal approach were to be found, it could establish a measure
of equivalence between the implementation codes of the two simulations,
but would not allow the re-engineered version to take full advantage
of the strengths of occam-π. Most significantly, here, the re-engineered
occam-π simulation can represent plants and locations as individual
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Context
Undeveloped Goal

(to be developed further)

Goal Solution Strategy

Justification

J

Fig. 3. GSN notations used in the equivalence argument: explanations are
given in the text description of the arguments that follow

occam-π processes, each having its own thread of control. The occam-

π processes communicate through channels through which data can be
passed. This gives a closer mapping between the implementation and the
biological reality than was evident in the C++ simulation.

4 A Structured Argument for Adequate

Equivalence

This section works through the argument of adequate equivalence con-
structed for the C++ and occam-π implementations. For simplicity, we
will refer to the C++ implementation as C, and the occam-π imple-
mentation as O. The argument is presented in GSN, using the standard
notations, given in figure 3. The meaning of these symbols in our work
is elucidated in the description of the argument that follows.

Note that the equivalence argument does not attempt to address the
rationale or engineering of the C++ simulation – this is an established
system that we cannot change. We do not compare the performance of
the two implementations, as the motive for the re-engineering is not any
immediate performance gain, but the distribution potential of the occam-

π simulation across computer grids [24], with the efficient management
of processes and events [32].
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4.1 The Top Goal

A GSN argument starts with a top goal. In figure 5, this is shown as
the rectangle labelled OCEquiv – O simulation is adequately equivalent to

C simulation. This is the claim that we want to make, and the whole
argument below is devoted to making that claim. In the diagram, lines
with solid arrowheads connect each goal to lower-level components that
together meet the goal.

A goal exists in a context. In figure 5, DefAdEq labels a context
node, here promising that a definition of adequately equivalent is given
elsewhere – in fact, the definition is given and explained in this section
of the paper.

It is hard to definitively define equivalence. Structures in different lan-
guages may be syntactically different but semantically equivalent, or vice

versa; we may have behavioural bi-similarity from different structures,
or, since we are modelling complex systems, we may observe different
results from similar initial conditions even within the same implemen-
tation. Despite this we need a definition of what we mean by adequate

equivalence in order to argue convincingly about it.

We therefore propose that:

the two simulations are adequately equivalent if they produce the

same results over the whole range of concern.

In common with most analyses of complex systems, same results can
be defined by statistical analysis – we run each simulation many times,
and collect the results. This gives a distribution for each result. We then
use an accepted statistical test (usually a non-parametric test that me-
dians and inter-quartile ranges represent the same distribution at some
confidence level) to determine whether the results can be considered
equivalent.

The range of concern is defined by ranges for parameters over which
the equivalence should hold. In the plant simulations, this relates to the
range of environment sizes and initial plant numbers. Note that, because
we cannot execute the C++ simulation on very large populations, we can
only consider equivalence within the range of this simulation. Instead,
we present direct comparisons of results within the range of the C++,
and theoretical arguments for the rest of the range. The comparison
of the results gives us high confidence within part of the range, while
the theoretical arguments give us some confidence, but at a lower level,
beyond that. This is represented figuratively in figure 4.

Note that the crucial factor in determining whether the definition
of adequately equivalent is sufficient is a discussion with the scientists.
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Fig. 4. Range of concern for arguing adequate equivalence: we wish to be con-
vinced over the whole range of both simulations (the Top Goal), but we can
only produce results evidence for part of the range; in the rest of the range we
rely on other forms of evidence

Thus, in our case study, we consult the scientist directly; since he con-
siders that our definition is sufficient, we can proceed. It is, of course,
possible that this initial acceptance may be reversed when the evidence
is complete and the whole argument presented – perhaps the scientist
can demonstrate that our non-parametric tests of statistical equivalence
are inappropriate, or our theoretical arguments are flawed, or perhaps
we find that there are bugs in one of the simulations that affect the
comparability of the results in other ways. The dialogue to establish the
definition and associated argument is essential in the establishment of
trust and understanding between simulators and scientists [2, 19].

4.2 Decomposing the Top Goal

Having agreed a top goal and the definition of the key terms that it uses,
we need to provide an argument that the goal is satisfied. In figure 5,
the top goal OCEquiv is met by following the ArgSciImplRes strategy. A
strategy in an argument explains the connection between a goal and its
sub-goals. Here, ArgSciImplRes states that we argue over three distinct
areas – the underlying science, the details of how the simulations are
implemented, and the actual results that they produce. The relationship
here is complementary – each child goal gives us some confidence that
the parent goal holds, and together, they give us adequate confidence
that the goal is met.

Note that the three-goal sub-argument in figure 5 is not an alter-
native definition of what it means for two simulations to be adequately
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OCEquiv

O simulation is

adequately equivalent to
C simulation

CDesc

Description of C

model

ArgSciImplRes

Argument over science,
implementation and

results

ORepScience

O represents the same

science as C

OSameResults

O gives same results

as C

DefAdEq

Definition of

'adequately equivalent'

is given in section 4.1

ODesc

Description of O
model

ORepImpAbs

O uses implementation
abstractions that are

adequately equivalent to those
of C

Fig. 5. Top level of the argument that the C++ (C) and occam-π (O) simula-
tions are adequately equivalent

equivalent. Rather, it is an approach to substantiating such a claim. We
are using the three-legged argument to support a claim that the results
will be the same across the whole range of concern.

The text in the GSN goal boxes is necessarily terse, and refers to con-
cepts that need to be defined, as in the above discussion of adequately

equivalent. It is hard to provide compelling contexts and definitive defi-
nitions. This is seen as a benefit, not a cost, of making structured argu-
ments – you get to see where your definitions are vague or unsatisfying.
(It is also much easier to see when another person’s arguments are weak.)

In GSN, an upward triangle beneath a context box means that it
has yet to be instantiated – it is a placeholder for concrete content that
is not yet available. In figure 5, the CDesc and ODesc context boxes
could be instantiated by a reference to the code of the simulations, to
common abstractions such as figure 2, above, or to summary text such
as the descriptions in section 3. The argument is not complete until this
instantiation is performed.
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ORepScience

O represents the same
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Definition of 'C

science'

OAllBioAssumptions

O implements all the
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Table of
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Table of
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List of
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by C

DefAbs

Definition of

'abstraction'

Fig. 6. Elaboration of the sub-goal to show that the simulations represent the
same science, from figure 5

Again, the point of GSN arguments is not to demonstrate with abso-
lute certainty that the top goal holds, but to demonstrate why the author
of the argument believes that it is holds. The reviewer can disagree with
the assumptions, strategy, and eventual evidence, and can challenge the
author to find a better argument. Here, for instance, our scientist may
dispute the strategy of arguing over three distinct areas, or may dispute
the totality of these complementary areas, and challenge the author to
make better justifications for its argument.

The three lowest-level goals shown in figure 5 are expanded in figures
6 to 8. Each of these argument fragments terminates in a circular solution

node. Solutions refer to the evidence that supports a claim. In very
simple arguments, evidence might directly support the top goal, but in
practice, such intermediate sub-goals and strategies are needed to create
a compelling argument. The following sections consider each of the three
sub-goals in turn.

4.3 The Science Goal

In figure 6, the goal, ORepScience, is shown as being solved by two fur-
ther goals. OAllBioAssumptions presents an argument that the occam-π

version is based on the same assumptions about the actual biology as the
C++ version. OSameAbs argues that the occam-π simulation abstracts



116 Ghetiu, Alexander, Andrews, Polack and Bown

OCodeStructures

The code of O

implements all the code

structures of C

CCodeStruct

Description of

code structures

used in C

AlgMapping

Table showing

how algorithms of
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implemented in O

CParameters

C is configured to use

the same parameter

values as O

ParameterComp

arison

Table showing

value of each

parameter in O

and C

CParameters

List of parameter

values used in C

OAlgorithms

O implements algorithms that

are computationally

equivalent to the key

algorithms in C

ODataStructures

O is implemented using data

structures that are equivalent to

the data structures used in C,

given the algorithms used in O

DataMapping

Table showing how

data structures of

C are implemented

in O

ORepImpAbs

O uses implementation

abstractions that are

adequately equivalent to those

of C

Fig. 7. Elaboration of the goal to show that the simulations represent the same
implementation abstractions, from figure 5

from the details of the biology in the same way as the C++ version.
Again, we expand the goals by providing context. From these goals, we
directly reach the evidence required, with solutions pointing to tabular
comparisons.

We could expand the argument, and the GSN, further to argue over
each compared assumption or abstraction, providing a specific argument
that each pair is adequately equivalent. This might be necessary if scien-
tist found the comparison tables unacceptable without further evidence.

4.4 The Implementation Goal

The second child goal in figure 5, ORepImpAbs, is expanded in figure
7, with new sub-goal relating to the adequate equivalence of the code
structure (OCodeStructures) and parameters (OParameters) in the two
simulations. The reasoning here is that the simulation implementations
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are adequately equivalent if they run equivalent algorithms on equivalent
data structures and use the same parameter settings.

OParameters is solved directly by a table comparing parameters in
the two simulations, whilst OCodeStructures is further decomposed into
a claim about algorithms and a claim about data structures. Each of
these is, again, solved by a table that compares key elements of the two
implementations.

Again, despite the appearance of precision provided by the GSN no-
tation, much of the argument here is still implicit and left to the reader
to infer. For example, it is implicit that equivalence of code structures
and equivalence of parameters is sufficient to argue equivalence of imple-
mentation. Similarly, the argument that two algorithms in the table are
equivalent is not made explicit. A software expert could verify or refute
our claims, by whatever means they chose, but the non-expert must take
our assertions on trust or ask for a further level of argument.

Also note that although the top-level goal talks about equivalence in
terms of a black box that produces results, the argument here is white-
box – we talk about how the simulation works internally. We are using
white-box methods to support a claim expressed in black-box terms. This
is similar to software testing, where it is common to combine white-box
and black-box methods.

4.5 The Results Goal

The third child goal in figure 5, OSameResults, is decomposed, in figure
8, into claims relating to the testing and experimentation on the two
simulations.

OCBoundaryCases claims that the two simulations provide the same
results for boundary and extreme cases within the valid range. This is
based on a common testing strategy, to establish that unusual situations
are properly managed. We have not developed this goal yet, as is shown
by the diamond beneath the goal box. To develop it, we need to con-
sider what cases to test, in terms of the parameter and value settings
that characterise each case – for instance, we may test both simula-
tions on the case where all plants are the same, in order to check that
clonal reproduction is implemented similarly; we might then check the
behaviours that result with very small and very large initial numbers
of plants (starting with the same plant populations), then look at the
effects of extreme environments. Unless equivalence were obvious – in a
very poor environment, we might be able to see that all plants died as
soon as the minimum time (trait survival assessment period) had elapsed
– in all cases, we would be using statistical analysis to determine accept-
able equivalence of the results, as described above.
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RangeOfConcern

Description of the range

of input parameters over

which C model is valid

and interesting

OSameResults

O gives same results

as C

OCBoundaryCases

O gives same result as C in

boundary cases of valid

range

OCExperiments

O gives same result as C in

original experiments used to

validate C

CExperiments

Description of original

experiments used to

validate C

J

CExperimentsGood

The experiments used to

validate O provide a good

test case because...

ArgCExp

Argument over N

experiments

Exp1Same

Experiment 1 gives the

same result in O and C

ExpXSame

Experiment X gives the

same result in O and C

Exp1Results

Results of

experiment 1

in O and C

BoundaryCases

Description of

boundary cases

n=N

Fig. 8. Elaboration of the goal to show that the simulations produce equivalent
results, from figure 5

OCExperiments states that, when the simulations are set up to repli-
cate the same experiments (e.g. same environment and plant population,
same trait and resource distributions), the results are the same – again
using statistical analysis to determine equivalence.

As OCExperiments is critical to our argument, we expand the goal
further to argue under the strategy of result similarity from n experi-
ments (ArgCExp) – we could add a context here, that n represents the
specific experiments conducted on the C++ simulation, as reported in
the literature. Below ArgCExp, experiments are enumerated – here using
the GSN version of ellipsis for brevity. We are showing that each entry
in some list has been considered, and evidence produced.

The whole argument fragment in figure 8 is in the context of Range-

OfConcern. This returns to the point made in defining adequately equiv-

alent for the top goal, that there is a range over which we can produce
equivalent results, and that, in this case, we can only claim that the
two simulations are equivalent when performing the type and scale of
experiments for which the C++ simulation was originally designed.
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In figure 8, CExperimentsGood is a justification node – shown by a J

next to the node. When expanded, it identifies a justification of why we
can assume that OCExperiments supports OSameResults.

5 Solution Data

The previous section summarises the argument of adequate equivalence
which we are making, and which we present to the scientist for review and
external scrutiny. We now consider some of the evidence, or solutions,
that support the argument.

Most of our argument of adequate equivalence points to tabular com-
parisons. We briefly cover two of the biological aspects, but then focus
on structural comparison from the implementation argument structure,
which raises most of the interesting issues of equivalence. The genera-
tion of evidence for the argument of adequately equivalent science is, in
general, more interesting, and the establishment of this argument will
be essential when we extend the simulation to support further experi-
ments on the intra-specific plant variation. However, for the argument
of simulation equivalence, the science has already been captured by J.
Bown in constructing the original C++ simulation (and reviewed by the
scientists with whom he was working). We have essentially one source,
Bown et al [6], and, throughout, we refer to an interpretation of it that
is directly expressed in the C++ implementation.

5.1 Biological Assumptions

Biological assumptions were not explicitly identified in the body of work
represented by Bown et al [6]. However, we have had to identify some
assumptions in order to complete the re-engineering, and can use these
to strengthen the argument of equivalence. Table 2 lists some of the
assumptions that form the context CAssumptions in figure 6. These have
been confirmed by the scientist, giving us confidence that the occam-π

simulation captures the assumptions on which the C++ simulation was
based.

5.2 Biological Abstractions

Between biological facts and assumptions and the construction of com-
puter simulations, we make various abstractions to map the real world
into the computational one. The abstractions are influenced by the plat-
form on which the computer simulation is built, as well as subjective
factors. To expand the CAbstractions context in figure 6, we collect the
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Environment Assumptions

1 The soil properties do not change radically in time.

2 The environment can be seen as a plain. Various three-dimensional land-
scapes will not affect the outcome.

Plant Assumptions

3 The uptake area of a plant can be considered conic.

4 The tap root is generally more developed than the fine roots.

5 The ratio between resource allocation towards growth and towards repro-
duction varies slowly in time.

6 Germination takes place in no longer than one day.

7 Plants develop unhindered, if having necessary resources.

8 Plants release their resources back into their environment, when they die.

9 Plants may die of starvation or due to unpredictable events.

10 Seed dispersal happens over a short period (a matter of days).

11 Each seed requires a similar amount of resource.

12 Seeds that fall in populated areas, most often do not germinate.

Table 2. Expanding CAssumptions – some of the assumptions made in the
C++ model [6], and mirrored in the occam-π simulation

abstractions made by Bown et al [6], some of which are listed in table
3). We then checked that the occam-π simulation respects each of these
abstractions.

5.3 Algorithm Mapping

To compare the algorithms of the two simulations, a sub-goal of OCode-

Structures in figure 7, we present pseudo-code summaries and check sub-
jectively for similarity. Figure 9 gives a pseudo-code overview of the two
simulations, whilst figure 10 focuses on the algorithm for resource uptake.
Note that the pseudo-code for the occam-π implementation is written to
facilitate comparison with the C++, rather than in a way that native
occam-π programmers would use.

The sequential C++ implementation has a centralised architecture.
This requires loop-iteration over, for example, all instances of location
and all plant individuals. Because occam-π is a parallel language, all the
occam-π processes (plants, locations) could execute in parallel, shown in
figure 9 as each individual and each location.

In the C++ model, a double-pass approach is used to reduce posi-
tional biases – resource uptake and usage are separated into two phases,
otherwise subsequent behaviours such as seed dispersal would take place
in the order in which plants are iterated. In the occam-π simulation,



Equivalence Arguments for Complex Systems Simulations 121

Environment Abstractions

1 Resource release and replenishment rates are constant.

2 The environment is 2D and each grid cell can hold only one plant.

3 The maximal level of resource is homogeneous across the environment.

Plant Abstractions

4 Requested uptake is homogeneous with respect to the distance from the
plant.

5 The uptake area has a regular shape and is not affected by neighbouring
competitors roots.

6 The ratio between resource allocation towards growth and towards repro-
duction, does not vary in time.

7 Germination is instantaneous (takes only one time step).

8 When they die, plants release all of their resources into the environment.

9 Plants die of random events and starvation.

10 Reproduction is instantaneous (takes only one time step).

11 Each seed requires an identical amount of resource.

11 Seeds die if cells are occupied, otherwise they become plants.

12 Reproduction is clonal.

Table 3. Expanding CAbstractions – some of the abstractions made in the
C++ model [6], and mirrored in the occam-π simulation

C++ simulation

instantiate locations

instantiate individuals

foreach timestep

/* resource uptake */

foreach location

assess resource demand

release resources

replenish substrate

/* resource usage */

foreach individual

allocate uptake

assess death

if not dead

assess development

assess reproduction

occam-π simulation

instantiate locations and servers

instantiate individuals

while simulation_running

/* resource uptake */

each individual

place resource demand

SYNCHRONISE

each location

process resource demands

replenish substrate

/* resource usage */

each individual

allocate uptake

assess death

if not dead

assess development

assess reproduction

Fig. 9. Comparing the C++ and occam-π simulations
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Resource uptake (C++)
Sequential algorithm

Main control loop:

foreach location

select uptake_area of location

create empty demand_list

foreach loc in uptake_area

if loc occupied

select occupying plant

calculate plant demand on

location

add demand to demand_list

normalise demand_list

foreach demand in demand_list

select demanding plant

add resources to plant uptake

replenish location’s substrate

Resource uptake (occam-π)
Parallel algorithm

Plants:

foreach location in uptake_area

send resource request

SYNCHRONISE

foreach location in uptake_area

if resources released

uptake resource

Locations:

create empty demand_list

while running

if resource request received

store request

if all requests received

normalise demand vector

foreach d in demand_list

select demanding plant

send resources to plant

reset demand_list

replenish substrate

Fig. 10. Comparing resource uptake algorithms for the C++ and occam-π

simulations

synchronisation means that the plant processes will be blocked until all
have finished sending their resource requests, when all processes will be
released to proceed to resource uptake.

In reviewing the complete comparison of the high-level algorithm, we
found that, in terms of semantics and results, the two implementations
can be considered equivalent. The resource flow is identical; only the
architecture through which it is carried out differs.

The second pseudo-code comparison, figure 10, refers to the pro-
cess of resource uptake. In the C++ implementation, resource uptake
is location-centric – the neighbourhood of each location is scanned for
plants and the demand of each plant is calculated and stored. A nor-
malisation process is necessary to divide the resource fairly among the
plants. In the occam-π implementation, however, the process relates more
closely to the biology, as each plant interacts directly with its location.
The computational abstraction is, in this case, that of plants and loca-
tions interacting through a client-server protocol [14].
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Fig. 11. Class diagram (UML notation) of classes in the C++ simulation

In this case, the algorithm comparison shows that, although the input
and output of the algorithms is equivalent, the detail is different. To make
a strong equivalence argument, we would need also to look at evidence
of resource uptake behaviours through experimentation and testing.

5.4 Data Mapping

The second sub-goal of OCodeStructures in figure 7 concerns the ar-
gument of adequate equivalence of data representations. We can explore
this similarity starting from a class diagram of the C++ implementation,
figure 11, and a similar diagram of the occam-π processes and channels,
figure 12.

UML provides an object-oriented modelling notation which is well-
adapted to expressing the class structure of C++, but the notation of
figure 12 is just an ad hoc representation of occam-π processes and chan-
nels. However, informally, we can compare data types between the two
diagrams. As in earlier argument fragments, we present the evidence at
this level for review; we only need to elaborate the comparison if the
scientist is not prepared to accept it.

The C++ implementation of Bown et al [6] uses the class Location

to represent represents cells of the environment. Each location contains
a resource substrate, of class Substrate, and a plant individual, of class
Plant. Because plants do not move, a Location instance is represented
as being composed of one Plant instance and one Substrate instance.
The Location attribute, occupied takes the value 1 if there is a plant
growing at a location, and 0 when a location is empty – in the C++ an
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Fig. 12. Processes and channels in the occam-π implementation (notation un-
defined)

unoccupied location is associated to an “empty” plant instance, rather
than to no plant instance. The diagram does not show the relationship
between a location and the plants that are taking up resource from it,
as the C++ implementation calculates this from the plant traits and
location at run-time.

In the occam-π implementation, a similar form is used for the loca-
tion substrate, but occam-π supports more flexible data structuring for
locations and plants. These are dynamic processes (the occam-π PROC

structure), which interact through channels (the occam-π CHAN struc-
ture). The relation between plants and locations is implemented through
explicit channel communication. The channel ends held by each plant
process can be connected to the corresponding channel ends in any lo-
cation process.

Comparing the two data structure implementations, we can observe
differences in terms of attributes and their data types, the nature of
plants, locations and their relationship. By reference to the biological
model that these represent, we could declare ourselves adequately confi-
dent that these implementations represent implementations of the same
abstract model. However, there are some subtleties that may present
problems, such as the subtle quantitative effects of internal data for-
mats: the C++ implementation uses the type double while the occam-π

one uses REAL32. The two differ in terms of precision, double being rep-
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resented on 64 bits, while REAL32 on 32 bits. Again, we need to check the
effect of this difference through appropriate experimentation and testing
– at this stage, we do not believe that the difference in precision quali-
tatively affects the simulations results, but we may need more evidence
to convince the scientist.

6 Discussion

In this paper, we present a summary of an argument of adequate equiva-
lence between an existing C++ simulation and a re-engineered version in
occam-π. If we can assume that the original simulation is valid, then es-
tablishing the equivalence of the occam-π version would imply its validity
in the same context and for the same purposes as the original simulation
(see [26]). We used GSN to visualise the argument structure: those faced
with evaluating our argument can immediately see the basis of the belief
that the two models are adequately equivalent, and can challenge areas
that they do not consider to be sufficiently supported by evidence.

This work is part of the CoSMoS project4, which is developing a
general framework for the simulation of complex systems. Part of this
framework concerns the routine collection of assumptions – about the
domain, the design, and the implementation. In the CoSMoS context,
just the exposure of assumptions has led to scientific acceptance of some
of our experimental simulations [2]. The work presented in this paper is
a first step towards producing guidance and techniques for systematis-
ing argumentation relating to simulation development. However, turning
assumptions into evidence for arguments that a simulation is a valid im-

itation of the real world, for a given scientific purpose, is a non-trivial
activity, which is the subject of ongoing research.

Computer scientists who have spent a career in the deterministic
world of the digital computer are often sceptical about the value of ar-
guments of validity, safety etc. However, in simulating complex systems
for scientific study, we are not seeking to model or implement tradi-
tional deterministic computer systems. A simulation that reduces the
interacting complex systems of the real world to a deterministic system
is unlikely to be adequate for the areas of scientific research that we seek
to support.

Our work, here and in the CoSMoS project, also signals a departure
from the common form of computer applications, in that our simulations
are designed to support specific domain models – a particular expert’s
view of a particular scientific context. The aim of the simulation is to

4 http://www.cosmos-research.org
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support those areas of scientific experimentation that rely on that spe-
cific scientific context. If the scientist wishes to extend or adjust the
context, then the simulation models must be extended or adjusted, and
the adequate equivalence re-established. Later revisions can be facilitated
through the careful recording of the argument of equivalence or validity
for each simulation; if a preceding simulation was already acceptable,
scientifically, and a new simulation corresponds to that simulation for
part of its range, then we need concentrate only on what has changed.

This brings us to the use of occam-π in the re-engineered simulation
presented here. To support the need to extend or adjust simulations
in line with scientists’ requirements, we need flexible implementations.
In CoSMoS, we have used a range of implementation languages, and,
although occam-π does not have the mature support of languages like
C++ and Java, we have found that applications written in occam-π are
easy to adapt and re-use. The CoSMoS project is assembling concrete
evidence of this assertion, as well as seeking to improve the maturity of
the occam-π programming environment.

7 Future Work

In relation to the specific example presented here, we need to complete
the argument of adequate equivalence, and expose it all to the critical
review of our scientist and his colleagues. Our next step is then to use the
occam-π implementation to scale up the original experiments, which will
improve the quality of the scientific evidence we can provide. We will then
produce a series of modified simulations to support other experiments
on intra-species and inter-species plant ecology, in collaboration with
Bown’s group.

In relation to the CoSMoS project, the work is contributing to the
body of evidence on use and suitability of occam-π for developing flexi-
ble, validated simulations to support scientific work. The argumentation
processes will form part of the CoSMoS framework for complex systems
modelling and simulation – we continue to review SCS work for guidance
in analysis, evidence collection and management, argument construction
and validation. We plan to provide specific guidance on producing GSN
type arguments in the context of complex systems simulation. In addi-
tion, we are applying the activities outlined here in a range of other case
studies including various scientific studies of the immune system and
work on swarm robotics.
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