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Preface

Building on the success of previous CoSMoS workshops, we are pleased to
be running the third CoSMoS workshop co-located with the 12th Inter-
national Conference on the Synthesis and Simulation of Living Systems
(Artificial Life XII), in Odense, Denmark. The Artificial Life conference
is an especially good fit for the CoSMoS workshop, examining critical
properties of living and life-like systems and attracting a broad range of
interdisciplinary researchers. The systems examined by these researchers
are inherently complex, and various modelling and simulation techniques
have become key to exploring and understanding their properties.

The genesis of the CoSMoS workshop is the similarly-named CoSMoS
research project1, a four year EPSRC funded research project at the
Universities of York and Kent. The project aims are stated as:

The project will build capacity in generic modelling tools and
simulation techniques for complex systems, to support the mod-
elling, analysis and prediction of complex systems, and to help
design and validate complex systems. Drawing on our state-of-
the-art expertise in many aspects of computer systems engineer-
ing, we will develop CoSMoS, a modelling and simulation process
and infrastructure specifically designed to allow complex systems
to be explored, analysed, and designed within a uniform frame-
work.

As part of the project, we are running annual workshops, to disseminate
best practice in Complex Systems modelling and simulation. To allow
authors the space to describe their systems in depth we put no stringent
page limit on the submissions.

We are delighted this year to welcome philosopher of science Paul
Humphreys, Professor of Philosophy, University of Virginia, USA as
our keynote speaker. Humphreys is author of the book Extending Our-
selves: Computational Science, Empiricism, and Scientific Method that
introduces the concept of computational templates, which form the core
of many computational models. Our proceedings start with an extended
abstract for Humphreys’ keynote that expands on computational tem-
plates and asks how the same template can be successfully used on dif-
ferent subject matters.

The main session of the workshop is based on four full paper submis-
sions:

1 The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,
http://www.cosmos-reseach.org
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Garnett, Stepney, Day and Leyser describe an example of how to
incrementally change a biological simulation (auxin transport canal-
isation in plants) in a principled manner using the process derived
as part of the CoSMoS project.

Ghorbani, Ligtvoet, Nikolic and Dijkema investigate institutional
frameworks to analyse socio-technical systems and understand com-
plexity in agent-based models, providing a Kauffman model example.

Polack focusses on arguing validation of simulation in science, propos-
ing the use of validity arguments across many validation approaches
to provide evidence that simulations are scientifically fit for purpose.

Stevens presents an adaptation to Gosper’s hashlife algorithm for the
application to a three-dimensional kinematic environment, by simu-
lating the environment which is modelled using cellular automaton
rules.

For the first time at a CoSMoS workshop, we also invited authors to
submit abstracts, for presentation in a poster session. Abstracts for the
following posters are presented in the proceedings:

Andrews, Ghetiu, Hoverd, Owen, Sampson, Warren and Zam-
orano provide a group reflection on researching complex systems,
providing an overview of general issues that can be both interesting
but challenging.

Araujo, Bentley and Baum show how a simulation of chromosome
missegregation in cancer therapies can provide new insights into can-
cer progression.

Jones, d’Inverno and Blackwell present an overview of their work
modelling the haematopoetic cellular system, including how adopt-
ing an agent-based technique can facilitate a system-level conceptu-
alisation of the domain.

Our thanks go to Paul Humphreys for presenting his keynote and to
all the contributors for their hard work in getting these papers, abstracts
and posters prepared and revised. All submissions received four reviews,
and we thank the programme committee for their prompt, extensive and
in-depth reviews. We would also like to extend a special thanks to the
organising committee of Artificial Life XII for enabling our workshop to
be co-located with this conference. We hope that readers will enjoy this
set of papers, and come away with insight on the state of the art, and
some understanding of current progress in Complex Systems Modelling
and Simulation.



vii

Programme Committee

Paul Andrews, University of York, UK
Fred Barnes, University of Kent, UK
James Bown, University of Abertay, Dundee, UK
James Dyke, Max Planck Institute for Biogeochemistry, Germany
George Eleftherakis, CITY College, International Faculty of the Univer-
sity of Sheffield, Greece
Philip Garnett, University of York, UK
Nic Geard, University of Southampton, UK
Simon Hickinbotham, University of York, UK
Andy Hone, University of Kent, UK
Tim Hoverd, University of York, UK
Sara Kalvala, University of Warwick, UK
Adam Nellis, University of York, UK
Nick Owens, University of York, UK
Fiona Polack, University of York, UK
Simon Poulding, University of York, UK
Mark Read, University of York, UK
Susan Stepney, University of York, UK
Jon Timmis, University of York, UK
Alan Winfield, University of the West of England, Bristol, UK



viii



Table of Contents

CoSMoS 2010

Some Relations between Formal Structure and Conceptual
Content in Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Paul Humphreys

Using the CoSMoS Process to Enhance an Executable Model of
Auxin Transport Canalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Philip Garnett, Susan Stepney, Francesca Day, Ottoline Leyser

Using Institutional Frameworks to Conceptualize Agent-based
Models of Socio-technical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Amineh Ghorbani, Andreas Ligtvoet, Igor Nikolic, Gerard
Dijkema

Arguing Validation of Simulations in Science . . . . . . . . . . . . . . . . . . 51
Fiona A. C. Polack

Adapting Gosper’s Hashlife Algorithm for Kinematic Environments 75
William M Stevens

A Reflection on Complex Systems: Interesting and Challenging . . 93
Paul S. Andrews, Teodor Ghetiu, Tim Hoverd,
Jenny Owen, Adam T. Sampson, Douglas N. Warren,
Antonio Gomez Zamorano

Modelling the Role of Chromosome Missegregation in Cancer
Therapies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Arturo Araujo, Peter Bentley, Buzz Baum

Agent-based Modelling of the Haematopoetic Cellular System . . . 101
Daniel Jones, Mark d’Inverno, Tim Blackwell



x



Some Relations between Formal

Structure and Conceptual Content

in Simulations

Paul Humphreys

Corcoran Department of Philosophy, University of Virginia, USA
pwh2a@virginia.edu

1 Wigner’s Question

In Eugene Wigner’s article ‘The Unreasonable Effectiveness of Mathe-
matics in the Natural Sciences’ [9] he claimed that “. . . the enormous
usefulness of mathematics in the natural sciences is something bordering
on the mysterious and . . . there is no rational explanation for it.” I want
to show here that much of what Wigner found to be “unreasonable” has
a straightforward explanation. We shall see that there is a number of
reasons why parts of mathematics are applicable to the natural world
and that these explanations differ in interesting ways. Unlike Wigner, I
shall not restrict my attention to the natural sciences because the prob-
lem of applications stretches across the disciplines. I shall also switch the
focus from traditional mathematics to computer simulations because a
similar question arises for those techniques.

In [4, 5], prompted by some remarks of Richard Feynman, I intro-
duced the idea of a computational template. In areas outside complexity
science, these are often derived from theoretical templates. A theoretical
template is a general representational device occurring within a theory,
containing schematic, second order, property variables and such that,
when all of the schematic variables have been substituted for, can be
successfully used to represent a variety of different phenomena within
the domain of that theory. Well-known examples of theoretical templates
are Newton’s Second Law, which in its simplest one dimensional form
is F = md2x/dt2, where F is the schematic variable; the mathematical
theory of probability, within which the schematic variable P requires the
substitution of some specific probability measure; Schrodinger’s equation
HΨ = EΨ , where the Hamiltonian operator H and the state function Ψ
are the schematic variables, and Lagrange’s equation I =

∫ t′

t
Ldt. These

are theoretical templates because they are interpreted formulas occur-
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ring within the framework of a recognizable theory that is about some
specific, albeit often abstract and very general, subject matter.

Not all substitution instances of theoretical templates are computa-
tionally tractable, whether analytically or numerically, but if the result-
ing, more specific, syntactic equation form has that property then we
have a computational template. A computational template is a purely
formal object; even if it originates as a substitution instance of a theo-
retical template, the original interpretation is removed to leave a syntac-
tic object that has only a mathematical interpretation. Computational
templates form the core of many computational models and one of the
remarkable things about them is that they are often applicable across a
wide range of subject matter, not only within a given science but across
different sciences. So, once we recognize the existence of computational
templates, we immediately face a different question than Wigner’s, which
is: How is it that exactly the same template can be successfully used on
completely different subject matters? Taking an example that is close
to the domain of complexity theory, the Lotka-Volterra equations have
been used to model not just fluctuations in predator-prey models in
population biology but arms races between nations in political science.
The widely used Ising models and spin glass models are computational
templates, as are the computational rules underlying many agent based
models. Important classes of computational templates are the core types
of differential equations (together with suitable initial or boundary con-
ditions for solvability) and the standard probability distributions such
as the Gaussian, the Poisson, and so on.

2 Types of Computational Templates

There are at least four types of computational template. The following
classification is based on how on how a piece of formalism comes to be
accepted as a computational template.

Type 1: The first type arises from a substitution instance of a theoret-
ical template. The substitution of a specific first-order property into the
schema is the first step towards a computational template but of course
it does not guarantee the computational tractability of the substitution
instance. This is in part because the syntactic form of the theoretical
template does not determine the syntactic form of the substitution in-
stance. In the Newtonian case, for example, both linear and non-linear
equations can result from the substitution of different force functions
and the methods needed to arrive at a solution for the non-linear case
are usually quite different from the methods used to arrive at a solution
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for the linear case. Because Type 1 templates are rooted in a subject
matter specific theory, even if a very broad theory such as classical me-
chanics, their origin provides no reason why they should be applicable
in other areas and so qua Type 1 templates, our question remains with-
out an answer. Note that the answer cannot rest simply on the fact
that classical mechanics is a very general theory covering many material
systems, because the point of application of that theory occurs at the
level of the computational template and not at the level of the theo-
retical template, and computational templates vary enormously in their
mathematical form.

Type 2: The repeated success of a given computational template can
result in its elevation to a stylized, abstract, computational template,
separated from its original interpreted theoretical context and available
to model other, often different, types of phenomena. This is a second
recognizable kind of computational template, an off the shelf tractable
device that can be opportunistically justified at the system level by ana-
logical reasoning from its previous successful applications to systems
that are recognized as being structurally similar. These are the kinds
of templates found in various Methods textbooks. These general equa-
tion forms – Laplace’s equation, Poisson’s equation, the diffusion equa-
tion, and many other well-known general equation types, or the familiar
Gaussian, Poisson, binomial, and other statistical distributions, to men-
tion only two well-known kinds – transcend specific theories and their
subject matter. To take Thomas Kuhn’s work [6] as a reference point,
he recognized that the ability to analogically transfer showpiece suc-
cesses exemplars as he called them such as the application to a mass
on a vibrating spring of a model for a simple harmonic oscillator to new
situations such as a simple pendulum was a key part of a scientist’s train-
ing. But because Kuhn’s exemplars are subject-dependent, they lack the
subject-transcendent quality of this kind of computational template. As
with Type 1 cases, it remains unexplained why the transfer of a piece of
formal apparatus from one system to another is successful.

Type 3: A third kind of computational template arises from the fact
that exactly the same formal ‘theoretical’ template can sometimes be
constructed from radically different assumptions. For an example of this
in terms of constructing the diffusion equation, I refer you to [3]. Al-
though each of those constructions rely on assumptions that are moti-
vated by subject matter specific considerations, because exactly the same
template is reached from very different assumptions, the resulting tem-
plate is not tied to the subject matter. It is this fact that explains why
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the diffusion equation can be applied to both discrete and continuous
phenomena, as long as one is willing to accept the empirical correctness
of the limit assumptions involved. One answer to our question thus rests
on the fact that computational templates can often be constructed from
a surprising variety of different starting points, using appropriate ideal-
izations and limit assumptions, a fact that allows us to understand why
they are widely applicable. These non-theoretical computational tem-
plates sit at the intersection of multiple subject domains, which is one
reason they tend to figure prominently in complexity sciences. (For a sim-
ple example take the logistic equation, which has been used to model the
growth of insect populations and the spread of languages)1. Of course,
recognizing this fact raises a new explanatory question at a deeper level,
which asks why those different starting points fit the systems that they
do, but remember that Wigner’s puzzlement was not about the appli-
cability of mathematics but about its ‘unreasonable’ effectiveness. The
more we can do in terms of explaining why a given part of mathematics
applies to multiple, different, systems, the less unreasonable the success
of mathematical modeling will appear to be.

The difference between Type 2 and Type 3 templates is that in the
Type 2 case the justification is made at the level of the template itself
using analogical inference, whereas the justification for a given Type 3
case is in terms of the construction from more basic elements.

Type 4: A fourth kind of computational template arises when a set of
very general structural considerations leads, by a single derivation, to a
widely applicable equation based template. One example is the Poisson
process in statistics, which can be derived from four simple structural
assumptions. Another example is contained in the well-known paper of
Barabasi and Albert [1] on generating scale free networks. The condi-
tions imposed on such a network is that a) it grows by the addition of
new vertices, rather than remaining static and b) that there is a prefer-
ential attachment of new nodes to existing well-connected nodes in the
sense that the probability for a new node to be attached to an existing
node is proportional to the number of nodes already attached to the ex-
isting node. The result is that the probability of a node being connected
to k other nodes is given by a power law. In contrast, in the Erdos-

1 Sometimes, the same formalism can be arrived at from subject matter spe-
cific considerations and also from a more abstract perspective. In an unpub-
lished paper, Tarja Knuuttila and Andrea Loettgers show how Lotka and
Volterra separately arrived at essentially the same computational template,
the former by analyzing a specific fisheries problem, the latter by analyzing
an abstract set of dynamical constraints.



Relations in Simulations 5

Renyi random graph model, the connections are made randomly rather
than preferentially and the probability of connectivity is then given by
a Poisson distribution.

Such networks are said to represent a wide variety of systems2. One
common example is the World Wide Web, with the nodes representing
sites and an edge representing a link from one site to another. A second
application is to the number of citations for journal articles, where the
nodes represent individual articles and a directed edge represents a cita-
tion of the in-node by the out-node. The distribution is claimed to follow
a power law [7]. The philosophically important point is that this fourth
kind of template is not based on explicit subject matter specific theory
and these power law networks are constructed on the basis of very mini-
mal features. So any network that originated via a process that satisfied
the assumptions will be accurately represented. This feature is at odds
with the traditional importance of the axiomatic method as employed
in science, which axiomatizes a subject matter specific theory such as
the von Neumann-Morgenstern axiomatization of utility functions [8] or
the axiomatization of status characteristics theory in sociology [2]. In
the case of computational templates, rather than starting with coherent
pieces of a subject matter dependent theory, we start with bits and pieces
of syntax that represent relevant aspects of the system. This piecemeal
construction does not provide evidence for the disunity of science; to the
contrary, it re-introduces a level of generality and unification into the
representations and as was the case for Type 3 templates, understand-
ing how this generality occurs reduces the sense of unreasonableness at
the effectiveness of the template.

3 Templates and Solution Methods

‘Effectiveness’ can apply to a variety of mathematical virtues. In the
case of simulations it can, amongst other things, mean effectiveness at
representing parts of the world or it can mean being effectively applica-
ble to target systems. The virtues involved are, roughly, representational
power and computability in practice. Wigner’s question tends to empha-
size the former; my interests are primarily in the latter. So, one task in
beginning to construct an answer to our question is to consider the sense
in which we can separate a template and a solution technique for that
template. A formal solution technique is an algorithmic method used to
get from a computational template to a mathematically true statement

2 I recognize that there is considerable debate as to how well some of these
examples fit the underlying model.
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and a factual solution technique is a formal solution technique supple-
mented with a method for selecting the empirically possible solutions.
Like templates, but for a different reason, solution techniques are not
themselves representational, although they produce a transition from a
template to something that is representational. Well-known examples of
solution techniques are optimization procedures on two dimensional sur-
faces or on an energy landscape, separation of variables for certain kinds
of differential equations, and the development of identifiability condi-
tions in econometric models. Some of these techniques are analytic and
some are numerical but they must be available in order for the formal
object to count as a computational template.

In order to see in more detail how we get from a theoretical template
to a computational template, take any differential equation as a repre-
sentative formal device. In the traditional syntactic account of theories,
the application of such an equation with suitable initial or boundary
conditions to a system consists simply in the existence of some deriva-
tion using the fixed apparatus of deductive logic. In practice, however,
a substitution instance of this kind of theoretical template must be sup-
plemented by a solution method in order to actually calculate outcomes
from the computational template and the methods will vary depending
upon the form of the substitution instance of the theoretical template. It
is therefore tempting to say that a computational template is a specific
substitution instance of the theoretical template that is computationally
tractable, augmented by a solution method. In some cases of equation
based models this is correct, because the solution methods do indeed
form a separate set of techniques that are applied to the model in rather
the same way that the deductive apparatus of traditional syntactically
formulated theories was taken to be a separable apparatus. So, for ex-
ample, using a Monte Carlo method for approximately integrating a
function is a computational technique that can legitimately be consid-
ered a separate component of applying a model. As a second example,
the fourth-order Runge-Kutta method for arriving at approximate nu-
merical solutions to ordinary differential equations is a well developed
technique that can also be considered separately from the model itself.
In both techniques, model specific adjustments may need to be made –
importance sampling in the Monte Carlo approach will often be func-
tion specific, for example – but the solution method is still a separate
component of the model.

In such cases in which the solution technique is separable from the
model, an answer to the effectiveness concern is to note that the same
solution technique can be applied to a variety of different simulation
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models, thus providing a unifying explanation for the effectiveness of
those models.

In other cases, and this is particularly clear in the case of some
agent based models and with cellular automata models, the method it-
self is an integral part of the computational template and the template is
self-contained in terms of including its own solution method. For exam-
ple, consider a standard fitness landscape model populated with agents
equipped with a search algorithm. What counts as a solution in this
case? Any future state in the dynamical evolution of this model can be
produced by running the model and it will work out its own develop-
ment using only syntactic resources that are purely internal to the model.
There is no global representation to which an external method can be
applied. This contrasts with many traditional equation based models in
that although analog computers can be used to dynamically produce
future states, this cannot be done syntactically unless the model is sup-
plemented with further solution techniques that lie outside the model
proper. In this second type of case, we have to fall back on the kind
of explanations given for Type 3 and Type 4 computational templates,
when they are available.

The framework described above will be brought to bear on issues
concerning how agent based simulations differ from simulations that use
a higher level conceptualization of the phenomena, how those higher
level concepts are connected to emergent phenomena, and in what sense
simulations can be considered as numerical experiments.
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Using the CoSMoS Process to

Enhance an Executable Model of
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Abstract. We describe our use of the CoSMoS process to struc-
ture an incremental change of a biological simulation. The do-
main is auxin transport canalisation. An existing simulator is
refactored to handle aspects of 2D and 3D space more efficiently,
and enhanced to include more realistically-shaped plant cells.
The CoSMoS process supports clear separation of concerns, al-
lowing us to concentrate on the biological model and the im-
plementation decisions separately. This gives a clear and well-
justified simulator design that can be validated by biologists, yet
still allows efficient implementation.

1 Introduction

Biological systems present many challenges to science, particularly due to
the complex nature of biology itself. Many biological processes are highly
connected, making it hard to study them in isolation. It is frequently
difficult to get good quantitative data; even good data might lack part
of the larger picture. These factors and many others make it difficult to
form good assumptions about how a biological process is being regulated;
our solutions might reflect our lack of knowledge, rather than offer insight
into the real process.

Increasingly biology is looking to modelling to help progress under-
standing. Developing a simulation of a biological process is a challenging
task in itself, but doing so can assist with some of the problems. The
modelling process requires the builders to go systematically through the
information and data about a system, ideally with experts in the field.
Simply going through this modelling process can highlight new areas of
focus, or problems and gaps in understanding. The resulting simulation
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and models can also be a tool for the generation and testing of hypothe-
ses, hiding some of the complexity of the real system but capturing
enough to allow the study of the process of interest.

The level of abstraction in a model is critical. Too high, and we
risk ruling out the possibility that simulations will produce interesting
emergent behaviours that are observed in the real system. Too low, and
the simulations produced could be difficult to work with, understand and
validate. These factors make the design decisions made when producing
a simulation important, as they determine the balance between these
conflicting requirements.

A simulation must be developed using a rigorous process of design,
implementation, and validation if it is to be scientifically respectable. Ad-
ditionally, a useful simulation will need to be upgraded and enhanced in
a principled manner as its requirements change to address new research
questions. The CoSMoS (Complex Systems Modelling and Simulation)
process [1] provides a flexible approach designed to support the modelling
and analysis of complex systems, including the design and validation of
appropriate computer simulations.

We have previously used the CoSMoS process to guide the initial
development of a simulation of an abstract tissue level model of plant
cells [14]. Here we present work using the same process to guide modifica-
tion and enhancement of this existing system, by improving the model of
space, and allowing more naturally shaped cells. This work helps demon-
strate how the CoSMoS process can be used in an incremental manner.

In §2.1 we overview the CoSMoS process as used for modelling, de-
signing, and implementing biological system simulations. In §2.2 we dis-
cuss the use of UML as a suitable modelling language to support this
process. In §2.3 we give an overview of the initial auxin model. We then
use the CoSMoS process components to structure the remaining sections.
In §3 we introduce the Research Context. In §4 we summarise the bio-
logical Domain Model. In §5 we discuss the issues relating to modelling
space that we are addressing in this increment. In §6 we discuss how the
Platform Model has been updated using the CoSMoS process. In §7 we
conclude with a discussion of our experiences.

2 Background

2.1 CoSMoS Process: The modelling lifecycle

Described in detail by Andrews et al. [1], and used in our earlier work [14],
the CoSMoS process provides a systematic approach to building models
and simulations of complex systems, including the biological system of
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Domain

Model

Platform

Model

Simulation

Platform

Results

Model

Domain
Research

Context

Fig. 1. The components of the CoSMoS process [1, fig.2.1]. Arrows indicate the
main information flows during the development of the different components.
There is no prescribed route through the process.

interest here. The CoSMoS process does not include a defined end point:
the process is incremental, aimed at supporting a series of simulations.
We [14] and others [34] have successfully used this process to assist in
the production of simulations of complex biological systems. Summarised
in figure 1, the process contains the following components (summarised
from [1, 14]):

Research Context : the overall scientific research context. This in-
cludes the motivation for doing the research, the questions to be
addressed, and the requirements for success.

Domain Model : conceptual “top-down” model of the real world sys-
tem to be simulated. The domain model is developed in conjunction
with the domain experts, with its scope determined by the Research
Context. The model may explicitly include various emergent prop-
erties of the system.

Platform Model : (called the Software Model in [14]) a “bottom up”
model of how the real world system is to be cast into a simula-
tion. This includes: the system boundary, what parts of the Domain
Model are being simulated; simplifying assumptions or abstractions;
assumptions made due to lack of information from the domain ex-
perts; removal of emergent properties (properties that should be con-
sequences of the simulation, rather than explicitly implemented in
it).
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Simulation Platform : the executable implementation. The develop-
ment of the Simulator from the Platform Model is a standard soft-
ware engineering process.

Results Model : a “top down” conceptual model of the simulated
world. This model is compared with the Domain Model in order
to test various hypotheses. (This part of our research is beyond the
scope of this paper.)

2.2 Modelling biology and simulations with UML

UML (Unified Modelling Language) [27] is a suite of diagramming nota-
tions designed to aid in the development of large object-oriented software
engineering projects by groups of developers working in teams.

Although UML is normally used in conjunction with an object-orien-
ted programming language, it is well suited to agent-based modelling [26],
where an agent can be thought of as an object with its own thread of
control, allowing highly parallel systems of multiple agents. Biological
‘agents’, such as cells and proteins, can be modelled as UML agents.
This relatively natural mapping between biological agents and their UML
counterparts means that much of the structure of a biological simulation
can be well-represented by UML. There are a number of published cases
where UML has been successfully used to assist the production of bio-
logical models [10, 14, 16, 34, 44].

We have found that UML diagrams (in conjunction with traditional
biological ‘cartoons’) are relatively accessible to biologists, allowing these
domain experts to provide input to the model of the simulation without
the need to understand the implementation details.

2.3 Auxin transport canalisation model

Auxin was one of the first plant hormones to be discovered, 130 years
ago by Charles and Francis Darwin [9]. Understanding auxin’s functions
still presents many challenges to plant science as it is involved in diverse
aspects of plant patterning and development. Computational modelling
plays an important role in auxin transport research [13].

We are using a UML-based approach within the CoSMoS process
to design and build a simulation of auxin transport canalisation in the
plant Arabidopsis. Our initial model and simulation is described in [14].
This approach allows us to build models containing the biological objects
that we believe to be involved in auxin canalisation, and then produce
simulations to test various hypotheses about the biological processes of
interest. If an hypothesis is correct we should see the correct emergent
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behaviour when the simulation is run; if not we can then return to the
UML models and implement our next hypothesis. If all our hypotheses
fail to produce the emergent behaviour of interest we might have to
return to a different part of the process.

In this paper we describe an enhancement to our initial model in [14].
The most significant modifications are in the Platform Model and associ-
ated Simulation Platform. We revisit significant assumptions about what
should be removed from the domain model. The main progress made in
the design and implementation of our models has been with the handling
of the simulation space, allowing the cells of the tissue modelled to be
more naturally shaped. The improved 2D simulator has been adapted
into 3D.

3 The Research Context

The auxin transport community studies many different aspects of auxin
transport. These include, but are not limited to: auxin transport canali-
sation [37, 38]; shoot branching regulation [21, 22, 28]; leaf venation [41];
and phyllotactic patterning [20, 35]. These processes are concerned with
the developmental patterning of a plant, at both the tissue level and that
of the whole plant.

Our research sits within this wider community; it uses background
biology derived from the literature, and from wet-lab experiments carried
out in the Leyser group (for more information see §4). We primarily
focus on modelling the process of auxin transport canalisation, within
the context of shoot branching regulation.

There are many published mathematical models of auxin transport.
We have chosen to develop executable models as we believe this mod-
elling technique lends itself to biological systems, and can offer an al-
ternative perspective [11, 13], particularly as we are modelling the PIN
protein transporters at a reasonable level of detail.

Our models focus on the question of PIN cycling and its role in
canalisation, and we aim to test different regulatory mechanisms of PIN
cycling.

4 The Domain Model: auxin transport canalisation

The domain of our model remains auxin transport. §4.1 summarises the
background biology used as input to the Domain Model. The full model
is informed by more detailed biological information than is summarised
here; we direct interested readers to reviews of auxin transport [4, 3, 7].
§4.2 summarises the way this biology is captured in UML diagrams.
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4.1 The Biological Domain

We are developing models to investigate the formation of auxin transport
canals in plant tissues. This process of canalisation and its regulation are
not fully understood.

Canalisation can be thought of as a self-organising process, where
auxin in cells promotes its own transport between cells through the tissue
of the plant [37]. In canalisation the transport goes from a source, an
area where auxin is accumulating, to a sink elsewhere in the tissue. The
link that forms between these two sites is called an auxin canal, and
the process by which it forms is canalisation [23, 24, 39]. The transport
of auxin between cells is dependent on membrane localised transport
proteins, of which the ABCB and PIN transporters are two prominent
families [2, 12, 15, 31, 43, 45]. We are primarily interested in the PIN
family of transporters. PIN proteins are often distributed asymmetrically
around the membrane of a cell. This asymmetry enables directional auxin
transport, which is central to canalisation.

We are particularly interested in canalisation within the context of
shoot branching regulation. Shoot branching is the process where lateral
axillary buds on the main stem of a plant activate and grow into branches
[22]. Auxin produced higher up the plant inhibits the growth of lateral
axillary buds, a phenomena known as apical dominance [8]. If the auxin
sources inhibiting a bud are removed by decapitating the plant the bud
is released and is able to grow. This can be reversed by application of
auxin directly to the site of decapitation. We believe that the bud is able
to grow only when it can export its auxin into the main stem.

The vascular link between an active growing bud and the main vascu-
lar tissue in the stem requires auxin transport canalisation from the bud
to the stem to trigger its differentiation. It is this canalisation process
we would ultimately like to model, as understanding canalisation at this
position in the plant could help with the understanding of shoot branch-
ing. In order for an auxin transport canal to form between the bud and
the main stem, the stem vasculature must behave as a relatively strong
sink when compared with the surrounding tissue. If the stem vascula-
ture is already transporting large amounts of auxin from higher up the
plant, its sink strength is reduced, the canal does not form, and the bud
does not activate and is unable grow into branch. However, if the level
of auxin in the stem starts to fall, its sink strength increases; this allows
canalisation to occur and a canal is able to form. Auxin can be exported
out of the bud, causing it to activate and grow into a new branch.

This process of bud activation has been successfully modelled math-
ematically on a tissue and whole plant scale [32]. However, there are
processes occurring at the cellular level that are not fully understood.
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pH 7.0
Cytoplasm

PIN efflux transporter Auxin (IAA)

pH 5.5
Apoplast

AUX/LAX influx transporter

PIN proteins can 
export auxin out 
of the cell

PIN cycling is 
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polarisation
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Auxin can be 
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AUX/LAX
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Fig. 2. Domain Model PIN Localisation: Auxin transport into and out of cells
is central to canalisation. Protonated auxin in the apoplast is able to enter
the cell passively, or to be actively influxed by AUX/LAX transporters. Once
inside the cell the majority of auxin is deprotonated and is therefore unable
to leave the cell unaided. This is often known as the Acid Trap hypothe-
ses [36, 33]. PIN transports are important to the efflux of auxin from cells.
The regulated cycling of PINs on and off the cell membrane causes them to
become localised asymmetrically around the cell membrane. This process is
not fully understood, but is critical to the directional transport of auxin in
tissues, and the process of canalisation.

Auxin has an interesting cell biology that is responsible for some aspects
of its behaviour (figure 2). Auxin is a weak acid and therefore some auxin
is able to enter cells passively from the more acidic apoplast (intercellu-
lar space) by crossing the cell membrane. It can also be actively trans-
ported into cells by AUX/LAX influx carrier proteins [30]. Once in the
pH-neutral cytoplasm the majority of auxin is deprotonated, and there-
fore unable to recross the membrane passively. It is essentially trapped,
a phenomena known as the Acid Trap hypothesis [33, 36]. Auxin is only
able to leave the cell via efflux transport proteins. We are interested in
the PIN family of transporters, as they are found to be polarly localised
in cells that form auxin transport canals and are therefore very likely to
be central to canalisation [40].
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The process of canalisation has been the focus of much prior work
over a long period. Sachs suggested a model where auxin facilitates its
own flow: both the ability of a cell to transport auxin and the polar-
ity of the auxin flow increase with the amount of auxin being trans-
ported [39]. Therefore as the transport capacity increases the cells in the
canal become better sinks and draw in more auxin from their neighbours.
Mitchison modelled this process mathematically and was able to show
it to work [23, 25]. Mitchison’s models predict canals of high flow and
low concentration, where as experimental evidence suggests that there
is both high flux and high concentration [5, 42]. Kramer later produced
models that showed that the addition of the AUX/LAX auxin influx pro-
teins can allow for canals of both high flux and high concentration [17].

We now have more information about the biology of canalisation.
Experiments show that auxin is up-regulating its own transport by in-
creasing the amount of PIN protein available to transport auxin [29].
Thus the more auxin in a cell, the more it can transport. This has been
further confirmed by experiments showing that if the negative regula-
tors of PIN accumulation are removed, auxin transport increases and
the stem is able to transport more auxin [6]. The other key part of the
process is the localisation of PIN to provide the directional transport of
auxin. However, the mechanism of PIN localisation is not understood.

PIN proteins are therefore of great interest to the canalisation pro-
cess as they export auxin out of the cells, and their polar localisation
patterns are responsible for complex transport patterns in a number of
plant tissues [18, 19]. However, what directs the PIN in the cells into
the observed polar patterns remains an important question: if PIN is
positioned by detection of auxin flux, as Sachs suggests [39], what is it
in cells that is detecting auxin flux? This is one problem our simulations
aim to address.

4.2 Domain Model UML

The UML used to capture the Domain Model has not changed signif-
icantly during the development process. We briefly summarise it here,
but direct interested readers to our previous paper for more detailed
discussion [14].

Domain Model use cases. These capture a high level view of what
the system does, such as the regulation of proteins and hormones.

Domain Model class diagram. This captures the biological entities
of interest as objects and classes. Objects map naturally to biological
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Fig. 3. Domain Model class diagram [14, fig.4].

entities such as proteins, hormones, and cells. Cells themselves are com-
posed of a number of objects such as membranes, cytoplasm and vac-
uoles, which are associated with each other in space. We also need to
regulate the production of agents like proteins and hormones, which is
done by cells. See figure 3.

Domain Model state diagrams. These are among the most useful
of the Domain Model diagrams for communicating with the Domain
Experts, as they appear to map well to the way these biological pro-
cesses are understood. State diagrams capture how an object changes
through time. They are able to show the different possible states of the
biological objects, and how an object moves from one state to another.
Some spatial information can also be captured by state diagrams, as the
changes can be associated with a location, within and outside a cell. For
example the possible state changes that the auxin object can undergo
are different depending on whether it is inside or outside a cell. State
diagrams map neatly to the traditional biological ‘cartoon’ showing pro-
cess occurring in cells (such as figure 2). The behaviour of auxin can
be cross-referenced between the ‘cartoon’ and the Domain Model auxin
state diagram (figure 4).

5 Modelling Space

Here we discuss an important part of the model that was not explicitly
dealt with in the first increment [14]: space.

The simulation space is part of the biological domain that cannot
easily be captured using UML, and might be based on assumptions that
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Fig. 4. Domain Model auxin state diagram [14, fig.6].

could escape recording. The space in which our biological entities exist is
implied in the UML. We can see from the domain class diagram (figure 3)
that we are representing part of a Plant built from a number of Cells (each
with a CellMembrane and Vacuole), surrounded by Apoplast. However the
nature of the space is not captured, nor is any information about how
the objects such as CellMembranes or Vacuoles are arranged into Cells,
nor how the Cells and Apoplast are arranged into a plant tissue. This
information might seem obvious, since it is easy to imagine (particularly
if you work in the field of plant science) what a small 2D section of
plant tissue might look like. This aspect is easy to capture with a more
traditional ‘cartoon’ and explanatory documentation.

In our initial simulation the assumption is made that a 2D rectangular
‘box’ is an adequate representation for a plant cell. Therefore the initial
simulation is limited to 2D cells of four straight sides. This is a reasonable
simplification to make; mature cells in the stem of a plant are often fairly
block-like in shape. However, auxin transport canals also form through
tissues with cells of varying size and shape, particularly at the interface
of a bud and existing vascular tissue. Therefore being able to test the
behaviour of our hypothesised regulation of PIN localisation in cells of



Auxin Transport Canalisation 19

more natural shapes would be interesting both from a biological and
simulation point of view.

Linked to this is the need to try to investigate the effect that 3D cells
would have on the behaviour of the hypotheses. There are a number of
differences between real 3D cells and simulated 2D cells that might have
an effect on the PIN localisation. Being able to simulate even a small
number of 3D cells could provide interesting insight into the effect of
abstracting 3D cells into 2D. Early simulations have been done in 3D,
but it is not well implemented in the initial simulation. We also want
to allow for more naturally shaped 3D cells. The first of these issues are
linked to the way in which space (the environment of the agents) in the
model is handled. This impacts a number of key areas: the interaction
between the agents and the space, and how the space is split up into
cells and the other structures in the plant tissue.

These modifications are more about changes in the level of abstrac-
tion assumed during the development of the Platform Model, about how
the simulation is to be constructed from the Domain Model. Sometimes
it is possible to change existing simulation code to allow for the change
in abstraction. In our case the changes are significant, and the develop-
ment process of the first simulation highlights a number of areas where
improvements could be made.

6 Platform Model

The Platform Model includes all the extra components that allow the
simulation to run. This includes all the processes required to get the
simulation to a point where it is able to start, such as generating the
space and populating it with cells.

The Platform Model has three kinds of information: biological pro-
cesses captured directly from the Domain Model; biological processes
required for the proper functioning of the simulation, but not of explicit
interest to the Research Context, implemented with regard to efficiency
rather than biological fidelity; instrumentation and other such aspects of
a simulation that are not part of the Domain, but are needed to observe
and document the simulation results.

Throughout the continued developmental process it is the Platform
Model that has seen the most change. Not only have we made efforts to
make the simulated space more realistic with respect to the real plant,
but huge improvements have been made in the data output from the
simulations and the organisation of the code.
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6.1 Platform Model UML

Platform Model use cases: these capture the user requirements for
using the simulator, the traditional use for use cases in software engi-
neering. These are unchanged from the original version [14].

Platform Model class diagram. This is produced from the Domain
Model class diagram, with all emergent properties (such as the Auxin
Canal) removed. This high level diagram shows mainly the biologically
relevant parts of the model, and is unchanged in this iteration (figure 5).

Platform Model class diagram, implementation level. As we
move towards code, implementation level data structures are added to
the class diagram. §6.2 discusses the changes to the implementation level
Platform Model class diagram.

Platform Model state diagrams. These follow the Domain Model
state diagrams and remain largely unchanged from the original ver-
sion [14].

As the simulator increases in complexity, keeping the high level and
implementation level Platform Models distinct becomes increasingly im-
portant. Things that are not biologically relevant, but are needed in a
simulator, such as the ability to easily checkpoint to allow restarting, add
complexity to the model that biologists do not need to see. We therefore
omit such detail from the high level Platform Model diagrams discussed
with the biologists, and retain it in implementation level Platform Model
diagrams used by the developer.

6.2 The Division of Space

The main changes we made in moving from the initial to the enhanced
version were to the way the space is handled in the Platform Model and
simulation.

The initial version treats the space as a largely homogeneous area, a
grid of pixels, on which cell membranes and vacuoles are drawn, dividing
the space into separate areas. Some areas are associated with objects like
Vacuole and CellMembrane; other areas are essentially null.

A CellMembrane is a continuous line enclosing the cell (figure 6A). It
is straightforward to define a cell membrane if it is built from straight
line segments. However it is more difficult to define realistic-shaped cells
with curved membranes (figure 6B) using this approach. The membranes
would need to be drawn correctly somehow, and then read into the sim-
ulation. It would be easier to place the cells into the space as continuous
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Fig. 5. Platform Model class diagram [14, fig.10]. Note that space is not ex-
plicitly dealt with, rather it is generic unless something like a CellMembrane
object is put into a position.

Fig. 6. (A): Section of visual output from the initial simulator. The thin line of
the cell membrane (outer grey line) is drawn into the space to define the cell.
The vacuole is defined by drawing another membrane (darker grey line). This
is a simple task for boxes, but more difficult for natural shapes. (B): Section
of visual output from the enhanced simulator, showing a continuous curved
membrane (black line).
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Fig. 7. Implementation level Platform Model class diagram of the initial sim-
ulator. All objects in space require access to a singleton class SpaceHashMap
that provides them with information about the space they are in, via the Space-
HashMapContainer class. As more kinds of space are needed, the resulting code
becomes inefficient and untidy. (Inheritance has been left off this diagram to
improve readability.)

areas of cytoplasm, and then determine the position of the membranes
around the edge (which is how it is implemented in the enhanced ver-
sion). A new method of handling the space needs to be able to address
such issues. We also want it to be easier to extend the range of different
types of space that could exist in the simulation.

In the initial version of the model, all space is described by a single
object. Figure 7 shows the relevant part of the implementation level
Platform Model class diagram. A single class, SpaceHashMapContainer,
has different attributes that allow it to represent all of the different types
of space in the simulation, depending on the values the attributes are
given. However, the complexity and size of this class increases each time
we add a new kind of area of space in the simulation.

Another significant issue with having all the kinds of space specified
in a single class is that some of the methods in the class need to behave
differently depending on what the kind of space is. This increases the
complexity of the individual methods in the class. The organisation of
the code also suffers from having added the space to the model, rather
than it having been designed with space in mind.
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Fig. 8. Implementation level Platform Model class diagram of the enhanced
simulator. The space is now built from different child classes of the Area class,
each with a holder looking after the different Molecules. The Space contains
many areas which compose a single Plant, the Plant has many Cells. Cell re-
quires access to the Space directly but also contain within it a list of all its
associated Areas. A Cell does not directly contain any Molecules. (Inheritance
of the different Holder and Molecule classes are not shown, to improve diagram
readability.)

For the enhanced version, we refactor the code to handle the space in
a more area-specific manner, to improve its structure and extensibility,
and to allow more natural-shaped cells.

In the initial model, space is general unless it is given a particular
type. In the enhanced model, all the space is given an area type. An ab-
stract class Area has attributes common to all the different types of area
in the simulation. Sub-classes extend the abstract Area class into more
specific kinds of space. Currently there are five types of area. Cells have
Cytoplasm, Membrane, and Vacuole. Outside the cells there is Apoplast:
the cell walls. Finally there is EmptySpace; this is used to allow more
elaborate shapes of space to be used in the models, and is not processed.
Apoplast areas separate all the cells from each other, and also separate
cells from EmptySpace. See figure 8.
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The abstract Area class contains many attributes and methods com-
mon to all the different types of area. These attributes and methods
tend to be the system aspects of the class, such as accessing the colour
of the object or its position in the space. The specific area type then
adds extra methods that give that space more biologically specific be-
haviour, and if necessary overload particular methods. This has many
advantages, including simplicity of code maintenance reducing the like-
lihood of introducing errors. When a new type of space is added to the
model much of the code is already in place.

6.3 Agents in Space

In the initial version, the code that determines how the agents move
around in the simulation space is held in the agents themselves. This
results in the classes describing the agents becoming more complicated
each time a new kind of space is added to the simulation. The agent re-
quests information about its current environment from the environment
directly. It then uses this to make an appropriate decision about what it
would do. There is also an inconsistency in where the agents are stored.
Figure 7 shows that auxin (Hormone objects) are held in the Plant class,
but the proteins are in the Cell class. This makes biological sense, since
the PIN and AUX/LAX proteins do not leave the cell, but auxin does.
However it makes better implementation sense to think as all three as
being held in the Space, and whether or not this is in a Cell is deter-
mined by what the space is. This is the case for the enhanced simulator,
as shown in figure 8.

The movement of agents is also the responsibility of the Space in the
enhanced simulator. Each Area sub-class that can have agents contains
an AgentHolder with methods for storing the agents that are contained
within it. The different AgentHolder sub-classes (such as AuxinHolder)
for each agent inherit properties from the parent AgentHolder, but are
also given specific behaviours. The AgentHolder classes accept incoming
agents to their area. The movement of the agents is controlled by the
Area sub-class, which has methods for moving any agents in the relevant
AgentHolder. This puts the responsibility of moving agents onto the Area
class. Therefore when a new kind of space is added, the areas are updated
to allow agents to move into this new kind of space. These changes are
reflected in figure 8 (the inheritance from the abstract AgentHolder class
and the Molecule class are not shown, to improve the readability of the
diagram.)
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Fig. 9. Processing sections of plants into the model. If the section photos are
of high enough quality the processing can be done automatically. (A) Photo-
graphic section from a real plant, tided up to allow it to be processed. (B)
Image processed for reading into the model: black areas will become Cyto-
plasm, white areas Apoplast. (C) Image modified by hand to isolate a patch of
cells: light grey areas will become EmptySpace. Vacuole areas are then added
automatically (dark grey). (D) Template as it finally appears in the simula-
tion visualisation. CellMembrane areas are added automatically at the interface
between Cytoplasm (here light grey) and Apoplast (here dark grey).

6.4 Space from Templates

The more natural-shaped cells are defined using templates derived from
images of real plants.

Figure 9 shows the lifecycle of a template: it starts as an image of a
section of a plant, and ends as a representation of the simulation space.
Templates can either be generated automatically (normally with a little
manual processing), or fully by hand. They need to contain only three
pieces of information: the areas of the space that are empty (not active
as simulation space but required to be spatially present); the areas that
are apoplast; and the areas that are cells. The template is then pro-
cessed to add vacuoles into the cells. These are not added directly from
the image being used, because simulated 2D cells need smaller vacuoles
than are shown in sections of real 3D cells. Instead they are added auto-
matically by filling the centre of the cell a certain amount (see §6.5 for
discussion of this). Cell membranes are also added automatically around
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the cytoplasm. Once the vacuoles and cell membranes have been added
into the space we essentially have areas presenting cell cytoplasm, cell
membranes, vacuoles, apoplast and any empty areas. All are displayed
as different colours in the image (shown as different shades of grey in the
figure).

In the simulation the space is created to match the pixel size of the
template, and the entire space starts off as apoplast. Each pixel of the
template is then read and its colour determines what it is in the space.
The next task is to group areas of continuous cytoplasm and the vacuole
inside them into the more abstract notion of a cell. In a plant, a cell is
essentially a container of elements that need to be held together. The
elements have no concept of togetherness, they are just associated in
space. The way the different elements interact is through the common
environment. In the simulation a cell is more abstract. It is similar in that
it contains lists of all of its spatial contents but it also needs methods
to create more proteins or hormones when they are required. Essentially
the nucleus of a real cell, which regulates what is expressed, is part of
the more abstract Cell class in the simulation. The Cell class provides
access to the common environment, to allow cell regulation.

6.5 3D Space

Our initial simulator version can handle 3D models, but not very effi-
ciently. The enhanced simulator space is implemented by ensuring that
all Areas know who their neighbours are, and therefore the move to 3D
is much simpler as it mainly involves giving the Areas more neighbours.
The code for the 2D and 3D versions of the simulator are therefore very
similar, which makes it much easier to maintain.

We can either generate block-shaped 3D cells from algorithms, or
naturally shaped cells by stacking prepared 2D templates together in a
careful order to create a 3D space. This requires three kinds of templates,
containing: only Apoplast; Apoplast and Cytoplasm; Apoplast, Cytoplasm
and Vacuole.

We are interested in 3D simulations to investigate how our hypotheses
behave in 3D, and the effect of using 2D simulation, particularly on the
effects of vacuoles. Compare the possible paths an auxin molecule can
take in a 3D cell with a large vacuole to that of a 2D cell with a large
vacuole. We can see from figure 10 that in a 3D cell taking the path
through the vertical section is much longer than taking a path through
the horizontal section at roughly the position of the dashed line. In the
2D cell there is only the vertical path. All other diffusing agents will have
the same problem. This could have an effect on auxin transport in a 2D
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Fig. 10. Comparison of possible paths of auxin molecules (or other agents) in
2D or 3D cells. In the 3D cell the auxin has the possibility of taking a short
path to the same position. This is not possible in a 2D cell with only one path.

tissue. We can use the 3D simulation to help calibrate the required size
of the 2D vacuole.

7 Discussion

We have used the CoSMoS process to produce an incremental change to
a pre-existing CoSMoS-based model and simulator. The enhanced simu-
lator has improved performance, allowing us to run simulations of canal-
isation over larger arrays of cells, and over more naturally-shaped cells.
Canals still form in the latter case, indicating that the observed process
is not an artefact of the rectangular cells. The biologically-relevant re-
sults from this enhanced simulator version will be presented elsewhere;
here we discuss the impact of the CoSMoS process on the development.

Continuing to develop our simulations with the CoSMoS process as-
sisted by UML has allowed us to progress in an efficient and systematic
way. Using this approach helps us to identify which of the assumptions
we made when making the transition to the Platform Model from the
Domain Model might need to be reassessed. Both the CoSMoS process
and UML have allowed us to see how progressing down a particular
development path was increasing the gap between the biology we were
trying simulate and how we were implementing it.
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The CoSMoS process ensures that at each stage of modelling and
simulator development effort is made to understand and acknowledge
what decisions have been made and why. It is also flexible enough to
work with software engineering tools like UML. UML is able to produce
detailed information about the structure of a biological system. It is
then possible to extend these UML descriptions of the biology into code
skeletons of a simulator, even though the final UML and code include
much more than just the underlying biology. That underlying structure
should be visible (visibility can be improved by maintaining a separate
Platform Model and Refined Platform Model), and areas where it has
had to change or has been deliberately changed (such as the removal
of emergent properties) can be highlighted and the reasons made clear.
UML diagrams, particularly state diagrams, can be compared with more
traditional biological ‘cartoons’ to enhance cross-disciplinary communi-
cation of model structure and included biology. This can help increase
information flow between modellers and domain experts.

Going through the CoSMoS process has allowed us to see that we
needed to return to the Platform Model of our simulator to include more
natural cell shapes derived from the biology. Both the CoSMoS process
and UML allowed us to identify parts of the simulator code that were
becoming over complicated and could be improved. From this we were
able to improve how the biology of the Domain Model is captured in the
Platform Model, and simultaneously improve the simulator code itself.

In the future we may wish to include more aspects of the Domain
in the Models and simulation. One important example is growth. Intro-
ducing growth into the current simulation architecture would be very
difficult to do. Therefore the CoSMoS process could be used to make
the transition between the current simulator to a new one in a way that
allows us to fully understand the differences between the two simulators
produced.
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Dieter Stierhof, Jürgen Kleine-Vehn, David A. Morris, Neil Emans, Gerd
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Abstract. Agent-based modeling is a tool that is frequently
used to analyze socio-technical systems. The high number of
interactions between the agents in these models causes com-
plexity. Different methods are required to understand this com-
plexity and interpret the model behavior and outcomes. In this
paper, we apply institutional frameworks, that are also used to
analyze socio-technical systems, to understand complex agent-
based models. Applying the frameworks to a case study – the
Kauffman model – shows that this approach can be successful
in giving structure to agent-based models and their outcomes,
which can in turn help to interpret the evolving complexity.

1 Introduction

Agent-based modeling (ABM) is a popular modeling tool used in dif-
ferent disciplines [1, 7]. One domain where ABM is applied is on the
boundary between technical and social sciences. Scientists in this do-
main are applying ABM to analyze so-called ‘socio-technical systems’,
such as industries and infrastructures. Socio-technical systems are gener-
ally defined as complex adaptive entities that require social and technical
elements engaged in an environment to reach a goal [11]. Technical arti-
facts include computers, or machines, whereas social components include
actors, organizations, institutions, laws and policies [5, 11].

One of the key characteristics that distinguishes ABM from other
types of modeling is the focus on decision-making individuals (agents)
rather than the whole system. Since the relationships are not explic-
itly defined or determined when making the model, the communication
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between these individuals results in different networks and multiple out-
comes [14]. These networks of interaction between the agents, and the
agents and the environment lead to emergent system structures which
are usually too complex to be interpreted easily.

It is exactly for this interpretation of model outcomes that we turn to
analysis tools that are used by social scientists, institutional economists
and policy analysts. These scientists claim that the complexity in social
systems is especially caused by the positions, relations and behavior of
the parties that own and operate the system [10]. By structuring and
formalizing the analysis of a system in a framework it might be easier
to understand the complex patterns generated. Conversely, the same
frameworks may aid in designing models in the same structured fashion.
In [11], for example, a method to guide the process of designing an ABM
is suggested (the so-called ‘system decomposition method’). The use of
institutional frameworks may actually formalize designing the content of
these models.

Two of the well known institutional frameworks are the four-layer
Williamson model [15] and the institutional analysis and development
framework (IAD) [12]. These frameworks have been successful in explain-
ing behavior and interpreting global outcomes within many different con-
texts such as economy, organization and policy analysis [10, 6]. The two
main proponents jointly received the Nobel prize for economics in 2009.
Although these frameworks have similar aims, they differ in nature but
can both be very insightful according to the problem domain.

In order to conceptualize the complexity of real world systems and
enable their description as agent-based models, we introduce the two
institutional frameworks. We believe that the frameworks are not only
useful in the design and implementation of agent-based models, but are
also helpful in their analysis. In this paper, we structure an agent-based
model using these frameworks to show how they can be applied. We dis-
cuss in which phases of ABM development the institutional frameworks
can be applied and the merits of using the frameworks.

2 Institutional Frameworks

The term institution has become widespread in the social sciences in
recent years which reflects the growth in institutional economics and the
use of the institution concept in several other disciplines, including phi-
losophy, sociology, politics [2]. [12] define an institution as ‘the set of
rules actually used by a set of individuals to organize repetitive activ-
ities that produce outcomes affecting those individuals and potentially
affecting others’. Agreements or rules can be called institutions only if
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they are accepted by those involved, used in practice, and have a certain
degree of durability [10].

Rules which are formed as a by-product during interactions, are at the
heart of institutions. Therefore, institutions can also be considered as set
of rules which influence, guide and limit the behavior of actors. They can
even be the conscious design behavior by one actor [9]. In other words,
institutions have two sides: they enable interactions, provide stability,
certainty, and form the basis for trust. On the other side, they codify
incumbent power relations and may hamper reform. If institutions fail
to fulfill stability or bring about non-decision making and mobilization
of bias, there is ground for institutional (re)design [9].

Institutional redesign refers to deliberate changes in institutional
characteristics. It is aimed at both the activity of trying to change the
institutional features, as well as the content of the institutional change
that is aimed for. In order to design institutions, one should be able
to understand and analyze institutions and the institutional frameworks
that are developed for this purpose. The two well-known frameworks are
the institutional analysis and development framework (IAD) by Ostrom
and the four layer framework of Williamson which will be discussed in
the next two sections.

2.1 The four layer Williamson model

The four layer framework of [15] is an approach to describe social and
institutional arrangements in an integrated fashion. Like in complex sys-
tems theory (see e.g. [4] on the concept of ‘panarchy’), each level operates
at its own pace, protected from above by slower, larger levels but invig-
orated from below by faster, smaller cycles. Thus a multi-layer system
can be described that shows both bottom-up and top-down causation.
Williamson’s model is shown in figure 1.

The top level is the ‘social embeddedness’ level. This is where cul-
tural components such as norms, customs, mores, traditions, and religion
are located. These grand institutions change very slowly, in the order of
hundreds of years: through continuous interaction with behaviors at the
lower levels, this layer is shaped and molded, while at the same time
functioning as a brake or anchor for the faster moving levels. One could
interpret this level also as the accumulation of the activities at lower lev-
els, thus as emergent from the system. [3], for example, demonstrate that
countries may differ fundamentally in values of uncertainty avoidance,
individualism, or the relation to authority. At a certain point, certain
norms are so embedded in a culture that specific rules are not necessary
anymore.
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Fig. 1. The four-layer model of Williamson

The second level is the ‘institutional environment’, in which the struc-
tures observed are the product of politics and provide the rules of the
game within which economic activity is organized. Political, legal and
governmental arrangements are located here. Laws are an important el-
ement of this level. For institutional economists, for example, the laws
regarding property rights are an important feature. Often the rules that
appear in this level are codified and the outcome of lengthy negotia-
tions. Therefore, change (e.g. rewriting laws) takes place in the order of
decades.

On the third level (the ‘governance’ layer), those arrangements are
described that govern the interaction between individuals. Alternative
modes of organization are described that range from hierarchical rela-
tionships (top-down) to market relationships (completely equal) and a
range of complex networked relationships (e.g. joint ventures or co-ops)
in between. Typical instruments that economists study in this layer are
contractual arrangements, although other interpersonal agreements that
are e.g. based on trust could also considered. The institutional environ-
ment provides the possibilities and the limitations of the agreements that
can be made between the actors (e.g. too much market power is a rea-
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son to forbid agreements between large organisations). The period over
which decisions are made is of the order of a year to a decade.

The fourth level (‘operation and management’) moves from the struc-
tural to the individual analysis. This is the level with which neo-classical
economics is concerned. On the assumption of rationality, individuals
calculate their utility and make decisions on variables such as price, de-
mand and output. Individuals focus on getting the marginal conditions
right. Adjustments in price and output are made in a more or less con-
tinuous way in response to changing (market) conditions.

Transaction cost economics and institutional economics mainly focus
on the third or governance level. Here the questions are whether the
rules of the game (level 2) and individual behavior (level 4) lead to the
required outcomes in terms of market behavior. This framework has also
been used by [10] to link the development of complex technical systems to
the institutional arrangements, thus combining the social and the techni-
cal. What can be seen is that the evolution of socio-technical systems is
intertwined: institutional arrangements restrict and steer technical de-
velopments, whereas technical innovations require new rules and open
up paths to different organizational arrangements.

2.2 The IAD Framework

The Institutional Analysis and Development (IAD) framework devel-
oped by Elinor [12] is related to Williamson’s layers. However, while
Williamson’s framework allows for more liberty in the analysis of the
separate layers, IAD more clearly specifies different elements of the sys-
tem description (see figure 2).

Fig. 2. The IAD framework
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The central concept is the ‘action arena’, in which individuals (or
organizations) interact, exchange goods and services, engage in appro-
priation and provision activities, solve problems, or fight. The action
arena is described by the participants (who have a set of resources, pref-
erences, information, and selection criteria for action) and the action
situation: the actual activity (or ‘game’) that is to be understood. More
detailed description of the action arena is given in section three.

What happens in the action arena leads to patterns of interaction
and outcomes that can be judged on the basis of evaluative criteria. The
action arena itself is influenced by attributes of the physical world (e.g.
climate, present technological artifacts), the attributes of the community
in which the actors/actions are embedded (e.g. cultural norms regarding
cooperation, demographics or education levels), and the set of rules that
the individuals involved use to guide and govern their behavior.

Although physical world and community influence the action arena,
it is the rules of the game that actually define it. Therefore, in IAD
quite some attention is given to these rules which overlaps with layer
two in the Williamson model. Rules are statements about what actions
are required, prohibited, or permitted and the sanctions authorized if the
rules are not followed. Seven distinct types of rules are distinguished:

Boundary Specify who is eligible to play a role: who is in and who is
out of the game?

Position Determine to what extent a distinction is made regarding the
position of the different participants. For example, a buyer or seller
on a market have a different role than an auctioneer (and thus dif-
ferent access to information, and different choices).

Choice Specify what a participant must, must not, or may do at a
specific point of the process.

Payoff Assign external rewards or sanctions to particular actions that
have been taken.

Information Describe what information may or may not be shared by
participants and whether they have a set of common, shared infor-
mation.

Scope Define what outcome variables should or should not be affected
by the actions undertaken.

Aggregation Specify who has responsibility for an action: for example,
whether a single participant or multiple participants should come to
a decision.

These rules can be analyzed within three distinct layers: the oper-
ational, the collective choice and the constitutional choice levels. Like
in Williamson’s framework, the different levels relate to different time-
frames: day-to-day activities fall within the operation level, the collective
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choices determine what operational activities take place and these are
reviewed over a 5-10 year timeframe, whereas the constitutional level
determines how the process of collective choice is organized (which is a
long-term process).

Apart from Williamson’s Level 1 (which in IAD is an exogenous vari-
able, an attribute of community), these three levels quite neatly match
the remaining levels in Williamson’s framework. For analysis purposes,
the emergent patterns are addressed separately in IAD.

Both frameworks also start with the assumption of rational, utility-
maximizing individuals but the frameworks are general enough to cover
any type of individual behavior. In IAD for example, when activities of
actors cannot be explained by the strong assumption of full rationality
and complete information, the weaker concept of bounded rationality is
introduced [12].

3 Case study: Kauffman’s Economic Web

In this paper we cover the conceptualization phase of the Kauffman
model as a case and describe how we can apply the institutional frame-
works to present the concepts of the model.

Applying the two institutional frameworks to agent-based models
can be done in three different phases. In the design (conceptualization)
phase, the frameworks can be applied to conceptualize the model which
in turn would help cover institutional and social concepts in the agent-
based model and also guide us in the future analysis of model outcomes.
The frameworks can also be used when implementing the actual software
model. Even more, we can use the frameworks to analyze the models that
have already been run. Of course, ABM is an iterative process and model
analysis can lead to modifications in model design and implementation,
but what we are suggesting is that the institutional frameworks can
actually be applied to any level of these iterations.

3.1 Model Specification

The Kauffman model [8] is a simple representation of an economic net-
work that can also be extended to illustrate a complex socio-technical
system. This model was originally formulated to show how future wealth
would evolve in an economy. We have chosen this model for its simplicity
to show how the two institutional frameworks can be applied to agent-
based models of socio-technical systems.

The basic model consists of a set of binary strings which represent
resources and a grammar table that can convert these strings to other
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forms . For example if we have ‘10011’ and a conversion rule in the gram-
mar table is: ‘10 to 111’ then the string would be changed to ‘111101’
using the conversion rule in the grammar table.

In [8], Kauffman explains how these simple concepts can represent an
evolving economy. The link between the basic terms used in the model
and that of the real world are presented in (table 1). From this point, we
will use the equivalent names in (table 1) when discussing the model.

To make this economic model more clear, we give a real world exam-
ple. Suppose that the primary resources are trees in a forest. Factories or
individuals use the trees to create new products such as timber, sheets of
wood etc with the help of different technologies (e.g. saw). These prod-
ucts can again be used to create newer products (e.g. furniture) by other
agents. In this example we can see that the primary resources (trees) can
still be available or newly created until the end of the simulation. As the
economy evolves, new technologies enter the web which can change the
products in additional ways and create an even more complex network.

3.2 Extension of the Kauffman model

Since Kauffman does not go into the details of agent interactions, we
cannot claim that his is a model of socio-technical systems. The extended
version that we conceptualize in this work is aimed to represent a socio-
technical system.

In our extension of the Kauffman model, there are agents with cer-
tain technology who can use the resources to produce new products; the
agents can be considered to be individuals or firms, resources and prod-
ucts are represented as strings. At the beginning of the simulation, these
resources are primary - i.e. not produced by anyones else. Later in the
simulation they can also be the product of other agents, as it is the main
task of agents to convert resources to products. Every tick of the simu-
lation, each agent takes a random turn to look for resources available in
the total resource portfolio with desirable characteristics or string pat-
terns and which he has technology for to convert. In the simulation, this
equates to manipulate a selection of strings stochastically to produce
output. As in a real economy, the agents must survive and remain finan-
cially fit. In the model, the agents gain money if other agents use their
products and they lose money if their products are not used after some
amount of time. New technologies are added to the simulation as time
proceeds to resemble how technology may evolve in a real socio-technical
system.

Thus, the extended version of Kauffman model represents a socio-
technical system according to the following characteristics [13]:
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1. Socio-technical systems contain technical components: the grammar
table is the representation of technology.

2. Socio-technical systems have changing environment: new rules are
added to the model over time to show the evolving technology in a
socio-technical system. New primary resources are also added to the
system(an example of this in the real world can be trees).

3. Entities who interact with each other and the technical systems:
agents use products of other agents and use the technologies to trans-
form strings (make new products).

4. Socio-technical systems are governed by organizational policies and
rules: for example, the agents receive points for creating goods that
are bought, but lose points if they create unused goods.

5. Socio-technical systems have emergent properties: lifetime distribu-
tion and income distribution of agents are in the shape of a power
law. The distribution of 1s and 0s in the products also has emergent
patterns which show how products evolve over time.

6. Socio-technical systems are non-deterministic: to mimic non-determ-
inism in this model, we used random creation of resources, random
turns for the agents to act and random production of the grammar
table.

Table 1. Representation of a socio-technical system in Kauffman model

Kauffman feature Representation of

string(1’s and 0’s) resources or products
conversion rule technology

agent firm
grammar table set of technologies

point money

The conceptualization of Kauffman model’s extended version using
the institutional frameworks is covered in the upcoming section. We will
address the other phases of model development in future research.

3.3 Understanding the Kauffman model with Williamson’s
framework

The Williamson framework primarily focuses on structuring and formal-
izing the drivers of individual (organizations) behavior. With the help
of this framework we hope to understand short-term and long-term dy-
namics of socio-technical systems, and to see where the system is heading



42 Amineh Ghorbani et al.

subject to higher level setting. Also, how changes in lower levels would
affect higher levels of organization and behavior. We use the Williamson
framework to structure the different levels of behavior in Kauffman’s
model by starting with individual behavior which is in the fourth layer.

Layer 4: Individuals and Interactions This layer focuses on in-
dividual agent behavior, their perception of the world and what they
are doing in order to survive. For the Kauffman model, each agent stays
alive by producing as many products as he can. He cannot predict what
products might actually turn out to be useful; he produces the product
without any particular reason and only because he has the technology
to do so. Agents take random turns to choose the products of other
agents or use primary resources. In this model, there is no specific rea-
soning for choosing a certain product made by any other agent. In more
complicated agent-based models where there are reasons for the decision
making process, this layer of the Williamson model would cover all the
characteristics of the agents and their individual behavior and decision
making strategy.

Layer 3: Governance Structure Each agent explores his options
with the information he has and decides to interact with other agents
in order to gain some benefit. The nature of this interaction which de-
pends on mutual agreement, lies within layer three. This layer covers the
agreements and contracts that take place between the agents. It is a form
of governance that structures the system and it is based on individual
cases of interaction and not something that exists in general within the
system. In the Kauffman model, the seller puts his product in a common
pool. The choice the seller makes, is random in this model. In many cases
of agent based models, there are agreements between agents for certain
actions to happen and these types of agreements lie within this layer.

Layer 2: Institutional Environment Rules are a fundamental
part of ABM. The formal rules of the game lie in this layer. Some exam-
ples of rules in the Kauffman model are listed below:

1. If the product of an agent is used by some other agents, the agent
gains some certain amount of money.

2. If the product of an agent is not used by other agents after some
amount of time (useless product), the agent loses money.

3. If the money of the agent falls below a certain threshold, the agent
dies.

In societal systems, these rules are themselves affected by levels below
and above, and thus inherently changeable. In an ABM, they are often
a given.

Layer 1: Informal Institutions This layer deals with the outcome
of iterated behavior of individuals and companies. This layer has two
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implications for agent-based models. First, we can define cultures and
norms for the agents (e.g. risk attitudes). Second, we assume that all the
global patterns, behaviors and structures that emerge from an agent-
based model lie within this layer. The two main characteristics of this
layer are that the institutions in this layer take a long term to form,
and also, they are very difficult to change. This is similar to how we de-
fine emergent properties in an agent-based model. Examples of emergent
patterns in the Kauffman case according to our early implementations
are:

1. The dying pattern of agents is a power law distribution.
2. The wealth in the economy is a power law distribution.

As illustrated in figure 1, the different layers of Williamson have bidirec-
tional connection. This means that the lower levels influence the higher
levels while the higher levels also cause limitations on the lower levels.
For example, the characteristics of the individual agents determines their
interaction and their actions, in turn, are constrained by the rules of the
model, such as the point deduction rule. On the other hand, the cul-
tural level which we can call the emergent institutions level in the case
of agent-based models is influenced or formed by all the lower levels of
institutions.

This is where the power of the Williamson model lies for the agent-
based modeling paradigm. As Williamson suggests, we can arrange all
the organizational activities into these four layers and explore how cer-
tain norms and cultures have formed. This of course holds for evolution-
ary models that aim to emulate long term developments and emergence.

As an example of analysis, for the Kauffman model we can change
the different levels of institutions separately to see how the two emer-
gent patterns we introduced above have been formed and how they can
be changed. For example, changing the local information of the agents
can change the wealth distribution since the agents would know whose
product not to use in order to decrease that agent’s wealth. Or, at the
third level we can change the rules of the system to see how they affect
the wealth distribution among agents. This perspective of the system
can make complex behavior more manageable if not explainable.

3.4 Understanding the Kauffman model with the IAD
framework

As mentioned previously the IAD framework is aimed at any situations
that involve people interacting with each other in a certain context and
following certain rules. Each application of the framework focuses on
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a specific activity (the action situation), the people who take part in
this activity (the participants) and the patterns of interactions between
them. The combination of activity and participants is called the action
arena. The interaction between the stakeholders in an action arena leads
to certain outcomes which in turn affect the action arena as well as the
exogenous factors influencing the action arena (rules, physical world and
community).

The action arena is the most important part of the framework where
all the decision making, analysis and prediction, takes place. The action
arena chosen for a model depends on the model outcome we are trying to
achieve. The chosen arena in the Kauffman model is where agents make
decisions to buy goods. Other models may have more than one action
arena. According to [12], the different specifications of the action arena
are as follows:

Action Situation the place where agents interact, is the market where
agents buy other agents’ products.

1. participants: a number of agents with similar architecture.
2. positions: buyer, seller
3. actions: taking resources from the common pool (buying) putting

newly produced products back in the pool.
4. potential outcomes:

– distribution of wealth among the agents
– number of dead agents
– number of products made at the end of the game
– the max, min, average length of the products produced

5. function that maps actions into realized outcomes:

– If any agent uses the product of any other agent in the common
pool he receives money for producing this useful product.

– If the products of an agent are not useful(not bought after some
amount of time) he loses money.

– If the agent can not produce goods after some amount of time,
he loses money and dies eventually.

6. information

– The agents have information about the available resources.
– The agents have information about the technologies they have.

7. cost and benefits assigned to actions and outcomes are the money
for production.
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Actors are defined by the following characteristics:

1. individual preferences
– Agents choose resources based on whether they have the tech-

nology to modify it. The resource could belong to anyone even
themselves.

– The agent may let other agents buy his product or not (ran-
domly).

2. individual information processing capability
– Agents don’t know who the resource they have chosen belongs

to, so they have incomplete information.
– Agents don’t know who is buying their product.

3. individual selection criteria
– How agents choose the technology to make a product from the

resource.
– How agents choose to let other agents buy their product1.

4. individual resources
– the technologies
– The resources available to each agent at a given time. Since we

have a common pool, the resources each agent can use is the
same as everyone else.

There are several factors affecting the action arena:

Physical world is the set of external entities and factors that influ-
ence the action arena. For the Kauffman model this includes resources
(which are primarily external and later made by other agents) and their
properties(e.g. rate of new resources being added to the system, length,
pattern etc...).

Community is defined by the following characteristics:

1. The norms of the system: Agents can choose any kind of resource
they want as long as they have the technology to produce a product
from it. Agents don’t know the producer of the resource they are
using. A product should be put back into the pool as soon as it has
been created.

2. The level of common understanding about the action arena: each
agent only has information about the available resources at a given
time.

1 the selection criteria is random in this example
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3. Individual preferences: The preferences among the agents are com-
pletely homogeneous in this game, but their set of technologies and
thus required resources is different.

4. Distribution of resources: Since we have a common pool the distri-
bution of resources among the members is equal, but the technology
the agent has is randomly distributed and some agents may have
better technologies than others.

Rules 2 that define the play of the game in the IAD framework are:

1. position rules : each agent is a producer
2. boundary rules: each agent stays in the position of a producer until

he dies or the game finishes; all agents have the same role, none are
excluded

3. authority rules: agents decide on their own product usage and have
no hierarchical relationship.

4. aggregation rules: every agents is solely responsible for producing
goods. Their success in producing ‘useful’ goods determines their
chance of survival.

5. scope rules: the set of outcomes that may be affected. The only scope
rule that affects agent production is that if his money reaches below
a certain amount, he dies.

6. information rules:
– at each node, the agent knows what the available resources are.
– and which technologies he has.

7. payoff rules: how benefits and costs are required, permitted or for-
bidden based on the actions taken and outcomes reached.

– if the resource the agent has chosen is a product of some other
agent, the producer receives money for producing a useful prod-
uct.

– if it is time to check the age of products in the basket, then check
and take away money from those agents who have produced use-
less products.

These were some of the conceptualizations defined according to the
different components of the IAD framework. The components of the
framework are optional and are only defined for a specific model if re-
quired [12].

2 The rules mentioned here are independent of the rules in the Kauffman
model and belong to the specifications of the IAD framework
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4 Discussion

For the conceptualization of the Kauffman model in this paper, the
Williamson and the IAD framework are both insightful when describ-
ing socio-technical system with agent-based models. However, in choos-
ing the Kauffman model for its simplicity, we have inadvertently also
limited the potential use of the framework for handling this particular
model of socio-technical systems. We believe that these frameworks can
also be applied to the process of developing agent-based models to give a
cultural perspective (behavior emerging from social interactions) to the
models and link this perspective to other components. In this section we
discuss the advantages and disadvantages of these two frameworks when
used in ABM (explained in table 2).

Table 2. Comparison of the frameworks

ABM Phase Williamson IAD

Design Broad definition of layers,
rules and behaviors

Explicitly defines the physi-
cal world, distinct types of
rules and behaviors

Implementation Provides high level structure
for programming

Objects can be defined ac-
cording to the components of
the framework

Analysis Informal layer and outcomes
situated in the same level

Specific focus on patterns of
interaction and outcomes

In the design and conceptualization phase of agent-based modeling,
as we saw in this paper, the two frameworks are both insightful. In
Williamson’s framework, the researcher can conceptualize the system by
thinking in layers and also the interactions the layers may have with each
other. For Kauffman’s case, first we can focus on the layer of individuals
and the properties of each agent such as the initial money or the tech-
nologies he may posses. In another layer, we can write down the rules
of the game and how for example the pointing system would work. At
the global level we can consider the results that we already expect from
the system3 or any form of culture that we are trying to implement (e.g.
trust).

While the abstractness of the Williamson framework does not explic-
itly define the components of the system, it makes the framework suffi-
3 The global patterns of the socio-technical systems one is trying to model

may be known in advance as one of the purposes of simulation is explaining
the unexplainable behaviors.
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ciently generic to be applied to almost any type of model. In the IAD
framework on the other hand, the variety of components and details, ex-
plicitly defines the key features of the system that may have been missed
when designing a system. For example in the Kauffman case, the IAD
framework makes us think about the properties of the actors (the infor-
mation each actor has and whether we want different positions (buyer,
seller) or one position as an agent suffices). One other advantage of the
IAD framework is the explicit representation of the physical world (e.g.
resources in the case of Kauffman model and how long and complex they
become as the economy evolves) which has a critical role in agent-based
modeling and is not considered in the Williamson framework.

In the implementation phase, the Williamson model gives high level
of structure for programming (in abstract classes and interfaces) but
the IAD framework seems to be more applicable. The components of
the framework can be used to define objects since there is a detailed
specification of actors. The focus on rule types is also another advantage
which can actually help implement the methods of the model.

The analysis of an agent-based model is also facilitated with the
help of the frameworks, as they both cover the outcome of systems.
In the Williamson model, we can change one layer of behavior to see
how it would affect the outcomes and have a more structured way of
analyzing. For example, for the Kauffman case we can experiment how
changing the nature of interactions between agents may actually affect
the emergent patterns. Since there is a specific layer (layer one) for the
global behavior that emerges from a system, it is insightful to use this
model to analyze what level of behavior is causing the emergent patterns.
It is worth mentioning that in the Williamson framework, the cultural
behaviors are combined with the outcomes in layer one. In the IAD
framework there are separate components for patterns of interactions
and outcomes beside the community component where the cultures can
be defined. On the other hand, different action arenas of a system require
separate specifications for the framework which might seem difficult for
sophisticated models but pays off in the end for giving a well-structured
and concrete model of a system.

In general, the Williamson layers derive their strength from their
lack-of definition. They force the researcher to think conceptually in
layers, without prescribing exactly what these layers contain. The IAD
framework on the other hand, presents the key features of a system that
are necessary to be considered in the process of building agent-based
models.

Both frameworks are intended for the analysis of (complex) insti-
tutional arrangements in societies. As such, they are a useful tool for
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triggering modelers’ thinking about the complex artificial societies they
want to create – in the conceptualization phase and, as we hope to show
in future work, also in the implementation and analysis phase.

5 Conclusion

This paper applies institutional frameworks to conceptualize complex
socio-technical systems as agent-based models. This is a new approach
which to our knowledge has not been applied to ABM before. This con-
ceptualization gives a more structured approach for framing complex
behaviors in agent-based models. The two institutional frameworks can
be applied to the design, and potentially implementation and analysis
phase of agent-based models. Furthermore, applying institutional frame-
works to ABM gives us the possibility of adding a cultural perspective
to agent-based models.

Our work is at an early stage. We aim to implement the Kauffman
model using the conceptualization we presented in the paper. Conse-
quently, the model will be analyzed according to the frameworks to find
out in more detail how they support us in understanding emergent be-
havior and how we can link them to lower level components.
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Abstract. Computer simulations are often used in the scien-
tific study of complex systems. However, the validity of simu-
lations is often neglected. This is a particular problem in the
potentially-valuable area of agent-based simulation. For collab-
orative complex systems simulation, the paper draws on conven-
tional simulation validation for inspiration. The proposal is to
use validity arguments across multiple validation approaches to
express evidence of fitness for purpose.

1 Introduction

Scientific study of natural complex systems uses a range of modelling
techniques, but the appropriateness of modelling is often left unstated.
There is little attempt to express the rationale and reliability of models.
It is not that rationale does not exist, but that it is not made accessible
– to those engaged in the study of the complex system as well as those
who read about the results.

Validation is considered here mainly in relation to agent-based sim-
ulations (ABSs), but the issues are of potentially wider relevance. ABSs
simulate individual components, with the potential to study processes in
complex systems that are not accessible to most other modelling tech-
niques (or laboratory analysis). However, ABSs of natural complex sys-
tems have been widely stated to be inappropriate for scientific use, be-
cause of the problems of mapping between the scientific context and the
simulation (summarised in Polack et al. [27, 26]). The problem is charac-
terised as a lack of perceived rigour leading to a lack of trust. However,
? The work presented here is part of the EPSRC-funded CoSMoS project

(grants EP/E053505/1 and EP/E049419/1, www.cosmos-research.org/),
and refers to the case study from the EPSRC-funded TUNA project (grant
EP/C516966/1). The paper draws on work by investigators, affiliates and
researchers on the CoSMoS project, notably Paul Andrews, Teodor Ghetiu,
Mark Read and Matthew Harbage.
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ABSs share conceptual properties with many other forms of modelling:
Polack et al. [26] show how other modelling techniques that are no more
rigorous or understood than ABSs are trusted by scientists.

This paper outlines some recent work on simulating complex systems,
including several examples and the putative CoSMoS process for develop-
ing and using complex systems simulations [3]. Conventional approaches
to simulation validation are considered in relation to the problem of ABS
validation. The paper then proposes the use of validation arguments. A
validation argument is constructed in relation to the purpose, criticality
and impact of the model; it records rationale, and exposes it to external
scrutiny.

1.1 Previous and related work

The consideration of validation is motivated by existing collaborative ex-
ercises involving laboratory scientists and computer scientists. The CoS-
MoS project has produced ABSs in collaboration with immunologists,
plant biologists and others. The basis and philosophy of the CoSMoS
project are the subject of a series of papers and a technical report:

– Andrews et al. [3] is a technical report summarising a high-level
process for developing complex systems simulations. It focuses on
ABS for scientific use, but is potentially applicable to other forms
of complex systems modelling. The process is based on observation
over a range of collaborative scientific ABS developments.

– Polack et al. [26] reflects on what makes ABS an effective tool in
scientific research; it focuses on the roles of scientist and simula-
tion developer, and the way that trust is developed by collaborative
modelling. The paper also reviews five CoSMoS-related simulation
studies.

– Polack et al. [25] identifies an architectural basis for ABS of com-
plex systems, focusing on components, environment and interactions.
The examples include game-of-life cellular automata and hypotheti-
cal blood platelets.

– Polack et al. [27] and [28] explore problems with existing ABSs and
existing methods for ABS development, and propose aspects of tra-
ditional software and simulation engineering that can be used to im-
prove the development, efficacy and validation of ABS. [27] uses the
CoSMoS example of lymphocyte migration [2] to illustrate modelling
and development concepts.

– Several papers have used argumentation approaches in the context
of complex systems modelling. Polack et al. [23] and Alexander et al.
[1] look at different aspects of the safety of the hypothetical study of
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blood platelets. Ghetiu et al. [10] presents arguments that two ABSs
of a plant community are adequately similar, whilst [11] make a case
for validation arguments.

There are other robust collaborative simulations used in scientific re-
search. Three examples are outlined here. All are rigorously-engineered
simulation examples, which exploit close integration of models in differ-
ent areas.

Reactive animation (RA) [8, 31] is the work of a group led by Harel
and Cohen, and has been used to provides detailed models of the be-
haviour of aspects of the mammalian immune system. The approach
combines off-the-shelf tools into a sophisticated and flexible simulation
environment. The key diagrammatic modelling components are Rhap-
sody statecharts (state machines) and Live Sequence Charts (connectiv-
ity diagrams). The approach is described as reverse-engineering biologi-
cal systems into protocols and object-evolution models [7]. The simula-
tion is similar to an ABS: a collection of objects manifest the behaviours
defined in the diagrammatic models. Experimentally-derived biological
data is used to drive simulations. The simulation can be manipulated
directly, through adjustable biological-scale time, zoom, and tracking
facilities. It is also possible to adjust the underlying models and see
the effects directly on the simulation, which allows the collaborators to
experiment with different understandings of the immune biology, and
different parameter settings.

A number of groups use stochastic process algebra to construct com-
plementary models of biological networks (see Calder and Hillston [6]).
Calder et al. [4, 5] use PEPA (Performance Evaluation Process Algebra)
to model and analyse biochemical signalling pathways, through a reagent
view (akin to state machines) and a network view (a connectivity model).
The reagent view can express concentrations and triggers to biochem-
ical product formation, whilst the network view captures time-ordered
sequences of events across the system. Whilst diagrammatic views are
supported, the PEPA modelling is mathematical, and the two views
have been proved isomorphic. The models are not ABSs, but the math-
ematical approach is closer to an individual-based model than a typical
population-level mathematical model. The formalism supports proof of
engineering properties such as deadlock-freedom, which improve confi-
dence in the computer models. There is traceability from biological mod-
els, at the level of chemical reagents and reaction details. The mathemat-
ical models support an algorithmic approach to generating conventional
ordinary differential equations, which provides a direct validation link to
the scientific analysis of these systems.
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Whilst explicit validation activities are not fully reported, like the
CoSMoS examples (see [26]) RA and PEPA were developed in interdisci-
plinary teams, with researchers from several communities bringing com-
plementary skills. The researchers develop mutual understanding of the
simulation media and the biological background [26]. Interdisciplinary
working also provides hypotheses that the simulation can be used to ex-
plore, and, in some cases, confirmatory laboratory experiments for the
interpretation of the simulation results.

The third example of systematic modelling and simulation is the
swarm robotics work of the Bristol Robotics Lab (www.brl.ac.uk). Unlike
the modelling of natural complex systems, swarm robotics benefits from
well-researched simulation platforms. Swarm foraging research [18] uses
the Player/Stage simulation platform [9], a generic robotics simulator
that can be customised to particular robot configurations; its use in
swarm simulations is as an ABS in which the robots are agents. A novel
aspect of the swarm foraging work is that the foraging behaviour can
be formally analysed using a probabilistic finite state machine model
[17]. The approach is used to analyse the effect of parameters on the
performance of the swarm and to optimise robot parameters. Despite
a range of simplifying assumptions (notably homogeneous rather than
adaptive robot behaviours), the data analysis shows “excellent agreement
between the model and the simulation” [17]. The agreement of analytical
and simulation results over a range of settings is taken as validation of
the analytic models.

In both PEPA and swarm foraging robotics studies, there is a strong
validation link between simulations and analytical models. However, in
both cases, there is an additional validation need, since the models
(PEPA reagent and network models; swarm Player/Stage simulation)
cannot fully represent the environment. This aspect of the validation of
the simulation models is currently addressed by observation and expert
appraisal.

In collaborative simulation, the design, engineering validation and
calibration each represents a process of negotiation and agreement among
the participants. The projects reviewed here are notable for their care-
ful engineering integration of methods from computer science, theoreti-
cal and laboratory science. The validity of the work is not in question.
However, it would be useful to have systematic approaches to record
validation that make good practice evident. The problem of validating a
model of a complex system arises whatever is modelled and however it is
modelled, and not just in the context of ABS for scientific research. This
paper focuses on ABSs in scientific research, simply for convenience of
presentation.
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2 The validation problem

In relation to conventional systems simulation, Sargent [33] states that
a model should be developed for a specific purpose... and its validity de-
termined with respect to that purpose. In complex systems simulation,
the necessary level of assurance, or confidence in the validation, also de-
pends on the purpose of the simulation, and, following good software
engineering practice, should be set independently of the development of
the simulation. A notable feature of complex systems validation is that
there can be no absolute notion of validity.

In the CoSMoS project, ABS case studies in a number of scientific
contexts have led to some insights into the development and validation
of ABSs. An ideal conceptual approach to complex systems validation
can be broken down into three separable activities [3]:

– Engineering validation appeals to engineering practice. It addresses
the quality of construction of a computer artifact. The approach can
be characterised as showing that the code meets its specification,
and that the specification meets the requirements. Furthermore, en-
gineering validity assumes that code has been adequately verified
(i.e. that the program is sound).

– Calibration is a tuning activity. The goal is to adjust the ABS pa-
rameters, behaviours, scale of operation, etc, to align the simulation
with the scientific context. The fine-tuning exposes assumptions, ab-
stractions and simplifications (in relation to the science and the de-
velopment of the simulation), as well as validating performance and
outputs.

– Scientific validation comes after engineering validation, in that it
assumes that the engineering strengths and limitations of the simu-
lation have been identified, and the simulation has been calibrated.
Scientific validation considers the validity of the domain model, for
instance by simulating existing real experiments and comparing re-
sults.

The three activities, whilst separable, are not necessarily distinct. For
example, calibration is not part of a conventional engineering validation
process, but may be seen as an engineering activity, since it contributes
to the validity of the engineering. In other situations, calibration is part
of the scientific validation, because the science is not well-enough under-
stood for the simulator to be calibrated only through engineering-style
exploration of parameters.

The overall validity of a complex system simulations can be explored
as an argument over the engineering and scientific evidence. The argu-
ment is fundamentally tied to the purpose of each simulation, and to the
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intended criticality and impact of results [3], and is ultimately judged by
those using the simulation and its results. Criticality relates to the role
of the ABS in context. If the simulation is a speculative exploration of
possible factors, it should have low criticality. However, if the goal of sim-
ulation is to identify a missing link in the scientific understanding, then
it has high criticality. Impact is similar, but not identical: a non-critical
ABS might have disproportionate impact in a new or under-researched
area, whilst a high-criticality ABS may have low impact because, once
it has identified a critical link, this is confirmed by scientific research.
If impact or criticality is high, then explicit engineering and scientific
validation must be planned and undertaken. Modelling and design ra-
tionale, test results, calibration evidence etc. can be recorded to support
the contention that the ABS is an adequate tool for the given purpose.
However, where criticality and impact is low, the validation evidence can
be more implicit, and could rely on basic engineering quality control and
normal laboratory lab-book records.

Simulation design and validation has long been part of conventional
systems analysis and engineering. For example, Nance and Sargent [21]
review work over four decades, whilst Sargent [33] summarises validation
approaches from conventional simulation. The work has been picked up
and extended in social science, where the problem of validating an imita-
tion of dynamic behaviour has been widely discussed (e.g. [15, 20]). The
following section considers how some existing approaches might relate to
complex systems simulation.

3 Validation in conventional simulation engineering

Conventional simulation engineering presents a variety of conceptional
and practical approaches to validation. For instance, Zeigler [35] presents
a theory for modelling and validation of simulations predicated on a
homomorphism between conceptual models and simulations. However,
he does not show how the homomorphism is established, and the work
does not map easily to the complex systems domain. The techniques
summarised by Sargent [33] are more practical, drawn from forty years
of research on simulation theory and practice [21]. Sargent focuses on
validation and verification of a computational model (an implemented
simulation) of a problem entity (the subject of simulation, reality). The
techniques are summarised in Table 1. The relevance to complex systems
simulation validation is considered by allocating Sargent’s proposals to
three broad categories: comparison-based approaches, testing-related ap-
proaches and combined approaches.
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Table 1. Summary of techniques for validation or verification of simulations
from [33]

Technique Summary of Sargent’s description

Animation Graphical display of operational behaviour

Comparison to other
models

(1) to analytical model results

(2) to other validated simulations

Degenerate tests Select internal and input parameter values to test de-
generate behaviour of simulation

Event validity Event occurrence compared to reality

Extreme condition
tests

Examine plausibility of model structure and outputs for
extreme and unlikely combinations of factors

Face validity Domain experts review design of the system, e.g. inter-
nal logic or input-output relations

Historical data Part of a data set is used to build the model, and an-
other part to test it: may be real or purpose-generated
data

Historical (i.e. tradi-
tional) methods

Three of the traditional approaches are:

Rationalism: assumes everyone knows whether underly-
ing assumptions are true; logical deduction from valid
assumptions leads to a valid model
Empiricism: every assumption and outcome is empiri-
cally validated
Positive economics: requires only that the model can
predict the future, so causal relationships, mechanisms,
assumptions and underlying structures are of no con-
cern

Multistage Combination the three traditional approaches above:
(i) Develop model assumptions from theory, observa-
tion, general knowledge
(ii) Validate assumptions empirically where possible
(iii) Compare input-output relationships of the real and
simulated systems

Internal validity Investigation of statistical similarity of results of re-
peated runs of a stochastic model

Operational graphics Live graphics of performance measures to allow visual
assurance of correctness of dynamic behaviours

Parameter variability
– sensitivity analysis

Change input and internal parameters and validate
against similar change in the real system. Sensitive pa-
rameters that cause significant change in outputs should
be made “sufficiently accurate” before use of the simu-
lation
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Predictive validation Compare simulation predictions to reality over time

Traces Trace behaviour of specific entities in the model to de-
termine correctness of model logic and accuracy of re-
sults

Turing test Ask knowledgeable individuals to distinguish the real
and simulated system outputs

3.1 Comparison-based approaches

Many of the techniques summarised by Sargent [33] rely on compari-
son with other models or with reality. Sargent considers Animation only
in the sense of graphical visualisation of operational behaviour, the in-
ternals of the simulation. He labels as Comparison the validation of a
simulation against other valid models, noting both comparison to ana-
lytical models and comparison to other validated simulations. Historical
data validation uses existing or purpose-generated data as a basis for
comparison between reality and a simulation, whilst Predictive valida-
tion compares the output of a simulator to what subsequently occurs in
reality. Operational graphics is described as visualisation of output such
that it can be used to compare behaviour to that measured in other
systems. Turing tests are the ultimate comparison to reality in which an
expert attempts to distinguish the simulation and the real system.

Validation through comparison may rely on visualisation or on data
analysis. Of the projects summarised in section 1.1, comparison with
analytical models is undertaken in the PEPA simulations, which gener-
ate ordinary differential equations for comparison with research-derived
equations. The swarm robotics example takes the opposite approach: the
analytical model of behaviour is itself validated against the simulations.
More generally, ABS complex systems simulations can be compared to
other forms of model such as scientific descriptions or mathematical mod-
els of population or individual behaviours.

Direct analysis of data in complex systems simulation is inhibited by
the stochastic nature of many simulations. Validity needs to be judged
by statistical measures, and gives only a level of confidence that the
simulation results and real data are comparable.

Visualisation, whilst not essential, is widely used in simulation of
complex systems. Validation is commonly undertaken by asserting the
visual similarity of the simulation and the subject of simulation. In one
sense, visualisation of a complex system simulation does provide valida-
tion, since simulations normally seek to show that some required emer-
gent behaviour occurs when the system behaviour at the low level is
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observed at a higher level. However, visualisation alone is inadequate.
Some of the reasons for this are:

– Visually similar behaviours arise from different underlying processes.
– A simulation abstracts from reality, such that a single feature in the

simulation represents a range of features in the real system; visual
behaviours may actually be artifacts of the abstraction.

– Unless great care is taken in abstraction and implementation, the
behaviours that should be emergent may be coded in to the simula-
tion.

In relation to comparison to existing models, there are few scientific
simulations that have adequately-documented validity. Ghetiu et al. [10]
explore ways to show that two simulations are adequately similar. An
important caveat to validation by comparison (and, indeed to validation
in relation to complex systems in general) is that the comparison can
only show the extent to which the targets are similar. The validation
cannot tell us anything about the independent validity of either model.

Another significant caveat to complex systems comparison is that the
model never includes all the complexity of reality. A strict approach to
modelling complex systems might expect to start at the very bottom,
such that classical physics emerges from quantum mechanics, chemistry
from classical physics, and so on. Indeed, Lloyd [19] comments that a
complete simulation of a natural complex system is a quantum computer
that efficiently simulates the Universe. However, a rational view is that,
at each level of interest, the effects of lower levels can be aggregated or
omitted without a significant effect on the desired emergent behaviour.
What this means for validation is that any parameter or behaviour that
is included in the model is a surrogate for a vast number of parameters
and behaviours that are not in the simulation.

3.2 Testing-related approaches

Many of the validation techniques summarised by Sargent [33] are de-
rived from testing approaches used in systems and software engineering.
Sargent provides simple examples to explain most of these approaches.
For example, in a job-queue structure, a typical Degenerate test would
look at the behaviour of the queue when the rate of arrival of jobs is
greater than the service rate. In relation to Extreme condition tests, Sar-
gent uses the example of an inventory system: “if in-process inventories
are zero, production output should usually be zero” [33]. In relation to
Parameter tests and sensitivity analysis, Sargent refers to quantitative
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and qualitative testing of internal and input parameters – this is similar
to practices such as range or domain testing in software engineering.

Face and internal validity and traces validation are also derived from
testing. Face validity is stated to be an expert analysis of the validity
of the model and its behaviour in terms of review of features such as
simulation logic or input-output relationships. Trace validity focuses on
analysing the behaviour of entities in the model (e.g. agents in an ABS).
Internal validity uses statistical techniques to explore the consistency of
results from repeated runs of a stochastic simulation [33]. Event validity
combines a testing approach with a comparison approach: the example
in [33] is a simulation of a fire department, in which the number of fires
in the model is compared to the real situation.

In complex systems simulation, approaches derived from conventional
software testing can be used both in the engineering validation and in
calibration of the simulation. Validation needs to explore the behaviour
of the simulator under a wide range of inputs and operating conditions,
in a similar way to that in which testing challenges software. A typical
problem in testing a complex system simulation is that the range of
possible interactions and the requirement for emergent behaviour makes
it impossible to accurately predict system behaviours. For all but the
most trivial throw-away simulation, calibration is an essential part of the
analysis of the simulation behaviour. In relation to calibration, sensitivity
analysis has been proposed (see [32]), but little agreement on appropriate
techniques1.

Testing and related challenges to a complex system simulation have
to be applied to all aspects of the simulation. In an ABS, engineer-
ing validation and calibration should be applied to the agents (low-level
components) and to the environment (without agents); then, realistic
collections of agents need to be tested in the environment, in a suitably
representative range of possible situations. There is a known danger here,
that the calibration activities tune the parameters and behaviours so that
the simulation gives visually appropriate results. This merely determines
a set of parameter values and behaviours that produce a nice picture;
it does not validate the simulation. A visually-accurate result may arise
from behaviours that are unrelated to the subject of simulation.

In the complex system simulation examples reviewed in section 1.1,
the PEPA and swarm robotics cases include mathematical analyses which
clearly depend on a correct interpretation of parts of the system logic
and relations (face validity). However, as noted above, formal analysis
of a complex system often requires significant simplifying assumptions.

1 In relation to CoSMoS, Read et al. are addressing sensitivity analysis for
ABS; initial ideas are noted in [30, 29].
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Furthermore, face validity, like Turing test comparison, relies on evalua-
tion by a domain expert, but simulations of complex systems in scientific
contexts are generally undertaken to explore the possible processes and
behaviours of systems that are not adequately understood: the necessary
expertise required for evaluation does not exist. The exploratory nature
of complex systems simulation also limits use of techniques for validat-
ing the internal structure, data and behaviour of the simulation, such
as event validity. The lower-level components (agents) may be conven-
tional engineered systems [24, 25] that can be validated conventionally,
but the components must also be validated against reality. Abstraction
typically replaces a multi-layer complex reality with two or three layers.
Validation can never be definitive because the correspondence between
abstract concepts and reality is indirect.

Sargent’s internal validity [33], which uses statistical techniques to ex-
plore the consistency of results from repeated simulation runs of stochas-
tic simulations, is highly relevant to validation of complex systems simu-
lation, since the simulations are stochastic and results from one run can-
not be considered to be representative. Statistical analysis is an essential
part of calibration and sensitivity analysis. The techniques that are used
to explore consistency across runs of one simulation are also applicable
when comparing simulation outputs to the real system. However, as with
other attempts at validation of observed behaviour, statistically-similar
results do not say anything about the validity of the processes and input
data that give rise to the results.

In relation to complex systems analysis, care has to be taken with
statistics. Data (from models or reality) are rarely amenable to para-
metric analysis, and it is easy to generate spurious results through in-
appropriate use of statistics. In critical situations, it might be necessary
to seek expert advice on statistical analysis – whether in relation to in-
ternal validity, comparison, empirical validation or any other data-based
validation approach.

3.3 Combined approaches

Traditional validation approaches are individually insufficient for vali-
dation of a complex system simulation. For conventional simulations,
multistage validation [22] combines the historical methods identified by
Sargent [33]: the approach establishes the theoretical credibility of the
simulation, identifying and validating the assumptions, and validating
assumptions and theory-use through empirical research, as well as as-
sessing whether the output of the simulation is as expected.

The multistage approach raises issues in complex system simulations:
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– There is little relevant theory against which to assess theoretical
credibility.

– In relation to assumptions, it is potentially possible to record all
identified assumptions made in representing the domain and in de-
veloping the simulation. It is common for calibration to uncover un-
expected simulation behaviour, which may be due to hidden assump-
tions. It is impossible to know whether a complete or sufficient set
of assumptions has been captured.

– Empirical validation of assumptions (etc) suffers from the surrogacy
problem: the simulation is not usually a close match to reality.

3.4 Traditional approaches: summary

In summary, no single technique is sufficient on its own to determine that
a complex systems simulation is valid, but most of the approaches consid-
ered have a potential contribution. Combined approaches are promising,
and could incorporate more techniques than the multistage recommenda-
tion above [33, 22]. Combination goes some way to addressing the prob-
lems of applying any individual validation approach to complex systems
simulation, and is clearly required to address the different validation ac-
tivities: engineering validation, calibration and scientific validation; vali-
dation of components, environment and components in the environment,
and so forth.

There is a need for circumspection in ascribing objectivity to the
outcomes of any validation activity, because its contribution can only be
considered in the context of all the activities carried out. In complex sys-
tems simulation, validation needs to present an argument across a range
of techniques, applied to more than just the parameters and outputs of
the simulation. We need to consider carefully what it might mean for a
complex systems simulation to be valid.

4 An example highlighting some validation
challenges

In traditional computing, if a system operating within its specification
meets its requirements then it is said to be valid. Validity is contingent on
operating context, but within context validity can be asserted in absolute
terms.

When considering complex systems (in general and as the subjects of
simulation), specification of behavioural requirements is problematic. A
typical complex system simulation is an abstract model of components,
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but the real components may exist at many levels of abstraction, and
the system that is being simulated may be poorly understood.

In a traditional computer development, the interaction of components
can be precisely specified, but in a complex system, emergent high-level
behaviours are the result of enabling, rather than dictating, appropriate
interaction, not only among components but also between components
and the environment. Complex behaviours are not simple combinations
of low-level behaviours, but include behaviours that are apparent only
when the system is observed at a higher level than that of the compo-
nents.

In engineering terms, this means that validation of complex system
simulations must consider at least (in order of increasing difficulty):

– the components;
– potential component interaction;
– the environment, from the perspective of its potential interaction

with components;
– the means of identifying the occurrence of appropriate emergent be-

haviours.

In addition to engineering validation, the simulations must also be
validated with respect to the reality that is being simulated.

The range of validation activities needed can be illustrated by consid-
ering the CoSMoS lymphocyte migration simulation [2]. Briefly, lympho-
cytes are white blood cells with a key role in immune processes. They en-
ter a lymph node from the blood circulation by a series of state changes
(“capture”, “rolling”, “migration”), through chemical interaction with
the vesicle walls. The simulation activity started with simulation devel-
opers and scientists working together to identify appropriate scientific
abstractions for the simulation. A model could have been constructed
at the biochemical (or even physics) level, but the questions of interest
to the scientists relate to how changes in vesicle shape might influence
the rate of migration, so it was appropriate to abstract to generic lym-
phocyte state changes. Validation of this abstraction involved discussion
and agreement with the scientists. Essentially, validation required the
scientist to “sign off” the abstract model – although in reality there is
ongoing dialogue and iterative improvement of the model.

In the lymphocyte migration study, the abstract scientific model (the
“domain model”, see [3]) maps cleanly to design and implementation
models for components (agents) [2, 27], so the engineering validation of
components was straightforward. The design of the environment, though
straightforward in engineering terms, is almost impossible to validate in
any scientifically-meaningful way. Some of the problems encountered are
as follows.



64 Fiona A. C. Polack

– Immunologists are not experts in blood circulation or vesicle archi-
tecture, so the scientific guidance is limited (the study was not of
sufficient importance to involve a wider group of scientific experts).
This means that the simulation environment is a gross simplifica-
tion of the dynamics of the circulatory system, and the effects of the
simplification are not amenable to validation within the scope of the
study.

– Empirical data is gathered from live subjects; data across subjects
varies by several orders of magnitude for some parameters. Scientists
are used to working with approximate data, but driving a simulation
with such uncertain data is interesting.

– The dynamic behaviour of the immune system cannot be studied
directly in a single subject, so the data to drive the ABS, and em-
pirical results that could be compared to simulation results, come
from a large number of different subjects. Scientists understand the
potential and limitation of interpolation across point data from dif-
ferent subjects, but there is no research on how multi-subject data
and behaviour can be compared with a simulation that implicitly
represents the immune system of one subject.

The lymphocyte migration study shares with all ABS the problem of
surrogacy: that the included features are also surrogates for excluded fea-
tures. Surrogacy became even more problematic when the simulation was
elaborated from data-only output to a visualisation. Empirical science
provides approximate rates for state transitions in the migration process,
and these are appropriate for driving the data-only simulation. However,
in the visual form, each lymphocyte has a spatial location. Lymphocyte
migration is related to adjacency to the vesicle wall which is now an
explicit feature of the environment. There is a question as to whether
it is acceptable to continue using the empirical data to drive the simu-
lation. The approach taken was simply to record that the inconsistency
exists, both in development and in analysis of results. Collaborative re-
view of the simulation results suggests that the anomaly does not have
a significant effect, but this cannot be validated objectively.

5 Argumentation and critical systems engineering

The discussion of conventional and complex systems validation highlights
the need to combine validation techniques, and the residual uncertainty
that is inevitable in validation of complex systems simulations. We sug-
gest that the optimal way to address validation is to construct validity
arguments.
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The technique of argumentation is used in critical systems engineer-
ing to present a case to regulators/certifiers for believing that a system
has a required properties, most commonly safety [1, 14]. It is impossi-
ble to absolutely demonstrate properties such as safety; instead evidence
is collected based on criteria such as use of accepted development prac-
tices; software, system and sub-system testing; mechanical analysis; past
experience; cumulative usage outcomes; and field trials. The evidence is
used to support an argument that the risk associated with a system is As
Low As Reasonably Practicable (ALARP), within the operational envi-
ronment for which the system is designed. Kelly [14] describes the general
approach to constructing and documenting safety cases; this forms the
basis for much commercial and military safety assurance, and assurance
of other critical systems qualities.

The origins of argumentation in critical systems is not unlike the sit-
uation in complex systems simulation. Early safety-critical systems were
unregulated and potentially unsafe [16]. Consequent deaths from acci-
dents led to regulation, part of which is usually certification. Potentially-
dangerous systems are allowed if there is sufficient evidence that they are
safe to operate in the given context. Evidence used to be based on pro-
cess (“I have followed good engineering practice, so my system is safe”).
This approach is not only unsatisfactory, but also inhibits innovation by
limiting engineers to use of approved processes.

A significant improvement in safety management came with product-
based certification. Independent regulators set the safety criteria and
specific evidence requirements that systems must meet. Developers es-
tablish evidence and tie it together by means of a structured argument,
known as a safety case. It is still possible to cite an approved process as
evidence, but this evidence is relegated to an appropriately-subordinate
role. A safety case is accepted or rejected based on independent review
of its arguments and evidence. Acceptability is not an absolute, and can
change over time, in the light of experience or new evidence.

Critical systems arguments present parallels to scientific investiga-
tion, particularly in biology, where understanding of complex natural
systems is a developing area, with much debate and competing theories.
If the validity of complex simulations can be established through argu-
ment, then it can be reviewed when new scientific understanding arises,
or when a simulation is improved. Revisiting the validation argument
reveals the extent to which validity still holds. The extent and formality
of the validation exercise depends on the purpose of the simulation and
the nature of the collaboration underpinning the simulation.
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5.1 Some possible validation arguments for ABS

The goal of ABS validation is to demonstrate reasonable adequacy. Just
as it is possible to argue that a system is as safe as reasonably practicable,
ABS validation must be an appropriate justification of the trust placed
in the simulation and its results. Validation is thus an argument that a
simulation meets its scientific and engineering objectives. As in safety en-
gineering, the argument is open to scrutiny by whoever needs convincing.
If an ABS supports laboratory research into a biological complex system,
then reasonable ABS adequacy is comparable to the adequacy of results
of laboratory experimentation [26].

Fig. 1. The top two levels of a generic argument that a simulation is adequate
for its intended purpose: for GSN notation, see text

Figure 1 shows the start of a generic argument of adequacy, using the
goal structuring notation (GSN) [14]. The top goal or claim represents
the intention of the argument: to show that the simulation is adequate for
its purpose. Here, the generic top-level claim is addressed using a strategy
(Top strategy) that leads to definition of three sub-claims. The diamond
decorations indicate that these claims need further consideration. GSN
provides notations for recording the context, assumptions and justifi-
cations for a claim. Figure 1 has three contexts recorded, namely the
descriptions of the simulation, the purpose and the criticality and im-



Arguing Validation of Simulations in Science 67

pact of the simulation. The triangle decorations show that these contexts
need instantiating, linking to the relevant statements or documents.

Ghetiu et al. [11] propose an alternative generic argument that maps
more directly to the conventional characteristics of an engineering vali-
dation: addressing the top-level claim that Simulation results are valid
according to the research purpose and requirements. The proposed sub-
goals are: (i) that the conceptual model is valid; (ii) that the simulator
accurately implements the model; and (iii) that the experimental set-
up is adequate (i.e. that it supports the needs of calibration and the
scientific purpose).

The argument itself needs validating. One way to do this is to record
justifications for the strategy. In figure 2, the justification simply identi-
fies the individuals (who would be named) who agree that this strategy is
appropriate. It would be possible to provide more than one strategy, per-
haps addressing different people’s concerns in relation to the adequacy
of the simulation.

Fig. 2. Recording the justification of a strategy using GSN notation

The extent to which each claim in an argument is elaborated is de-
pendent on the purpose, criticality and impact of the simulation, and
on the people who review the argument. These aspects cannot be sep-
arated: some people are inherently harder to convince than others, but
some simulations are more critical than others, so there is a trade-off of
conviction against importance.

To illustrate validation in more detail, consider the argument extract
in figure 3, recording that the results of a simulation are adequately
similar to those obtained in the laboratory. This is adapted from an ar-
gument, presented in [10], that seeks to validate a simulation by showing
that it is adequately similar to an earlier simulation that features in eco-
logical literature (the remainder of the argument in [10] shows the extent
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to which the two simulations capture the same scientific model and the
same implementation model).

The validation argument in figure 3 lays out what has been (or should
be) done to show that the results of the simulation adequately replicate
the results of existing scientific experiments. This is a typical comparison
activity, in which the simulation is calibrated against known scientific re-
sults. The argument includes two new pieces of notation. The lowest-level
claims represent a set of experiments, each of which must be satisfacto-
rily evaluated: the set is indicated by the black dot on the link from the
strategy to Claim: experiment n – the dot can be annotated with the num-
ber of experiments to be conducted, and the number would need to be
related back to the set of canonical experiments identified under context:
results. The circular component at the bottom of the diagram represents
a solution, the evidence that supports or substantiates a claim – here
the evidence is that, for the first experiment, the simulation results are
acceptably similar to the results from laboratory experiments.

Fig. 3. Arguing that results are adequately equivalent: for GSN notation, see
text

The argument of result adequacy is spelt out quite carefully, with
reference to particular statistics and confidence levels. Context: results
points to the need to identify and agree a set of canonical experiments.
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However, there are assumptions which may or may not be acceptable to
the reviewers of the argument; three of these are as follows.

– The explicit assumption, Assumption: results states the need for a
sufficiently close mapping between the real and the simulated exper-
iments: it does not say anything about how this is demonstrated.
The reviewers of such an argument might want to see an explicit
mapping argument for each experiment.

– Context: adequate similarity would give details of the equivalence met-
ric. It might be necessary to state the number of runs required for
each experiment, or to provide other detail of statistical testing. It
might also be necessary to provide a justification for the particular
statistic used.

– The outcome of experiment 1 is stated in Evidence: Exp 1; it might
be necessary to provide a more explicit set of evidence and, perhaps,
a link to the statistical analysis.

Conversely, it is possible that a reviewer would accept the argument
that results are adequately similar based on no more than is presented
here – without even instantiating the detail of the two contexts. A re-
viewer who was convinced by arguments of quality in the engineering
and scientific areas (the parts of the argument not shown here) might
be inclined to take results evidence as relatively unimportant, merely
seeking to know that the experiments had been properly thought out.
The unresolved Claim: experiment n implicitly records the assumption
that all other results were adequate, and make it easy to identify where
to strengthen the argument if necessary.

Whilst in most cases an informal agreement that an argument is
sufficient is acceptable, a more structured analysis of the argument may
be needed. The evaluation of goal-structured arguments is not a well-
researched area. However, systematic deviational analysis can be used to
seek weaknesses (see [13, 34] for examples of deviational analysis applied
to models).

6 Discussion

The novel contribution to validation is in the presentation of the argu-
ment of validity. Argument over evidence is an accepted way to demon-
strate the qualities of critical systems such as safety or dependency. Fur-
thermore, the justification steps that contribute to a validity argument
are closely allied to the internal rationalisation that takes place in con-
ducting science (or any other activity where resource usage must be
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justified!). However, the use of explicit argumentation techniques in val-
idation is novel. The principle is similar to critical systems usage: where
a quality cannot be demonstrated absolutely, the basis of believing that
the quality pertains to the system must be demonstrated as fully as
possible, with reference to evidence.

This paper focuses on validation of ABS in scientific contexts. How-
ever, it has potentially wider application – to other forms of compu-
tational model, and to other scientific instruments. Consider the three
forms of enhancement that Humphreys [12] describes, in relation to sci-
entific instrument use:

Extrapolation: the extension of an existing modality. For example,
vision is extended via a microscope.

Conversion: the conversion of a feature from one mode to another. For
example, a visual display on a sonar device.

Augmentation: the extension of accessibility to features which, in their
natural form, cannot be detected by humans. Examples include the
detection of intangibles such as magnetism and particle spin.

The enhancements form a continuum, and are not discrete: conversion
is often used with extrapolation and augmentation. The conceptual di-
vision is useful in focusing attention on how and why people use some
instruments and not others. ABS in the scientific study of complex sys-
tems is primarily an augmentation tool – it allows a scientist to explore
behaviours that are not detectable or not explicable under laboratory
conditions. However, there are many more augmentation tools in this
field, and similar validation issues apply in all cases.

Candidate techniques for validation of complex system simulations
range from simple visual comparisons to elaborate statistical analyses.
The choice of techniques for a particular simulation must relate to the
purpose of the simulation, and to its apparent criticality and impact. As
in other critical systems argumentation, validity arguments are intended
to record the basis of belief and to expose the basis of belief to external
scrutiny. In the case of validation of complex systems simulation, it may
not be necessary to present a complete argument or a complete set of
evidence – the rigour and completeness of the argument should match
the intended purpose, and the criticality and impact of the simulation.
However, it may also be necessary to revisit the argument repeatedly, as
the understanding of the science modelled in the simulation changes or
improves, or if the impact of the simulation is greater than that originally
assumed, or to satisfy those who must be convinced by the argument.
It may be appropriate to turn to other critical systems techniques to
challenge the simulation models more thoroughly, or it may be sufficient
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merely to demonstrate informally that a reasonable effort has been made
in relation to assumptions and justifications.

In critical systems engineering, argument patterns may be used to
express common strategies. Validation arguments or parts of argument
can also be generalised to patterns suited to different modelling contexts.
Patterns could also address the ways in which different techniques can
be adapted and combined in complex systems simulation validation.

As in uses such as safety case argumentation, the validity argument
establishes the basis for trust [26]: if a claim cannot be substantiated,
or is demonstrably false, the argument (and possibly the simulation)
must be revisited. However, whereas in safety case argumentation, an
unsubstantiated claim invalidates the top claim of system safety, in a
validation argument, claims may be left as only potentially substantiat-
able. There are many reasons for this: complex systems simulations are
exploratory, testing and uncovering new hypotheses; scientific analysis of
complex systems is still exploratory, and many details of mechanisms and
interactions are not well known; some areas (such as immunology, neu-
rology) do not admit direct access to the living system so dynamics are
at best hypothetical; the mappings from continuous reality to a digital
computer simulation are not well understood. The validation argument
is thus likely to be incomplete, because the scientific and engineering
basis of the simulation is incomplete. Validation is as much about the
limitations of the simulation as it is a demonstration of adequacy.

7 Summary

Simulation is an essential part of scientific study of complex systems.
ABS are not widely trusted, despite some successful examples of collab-
orative simulation development. The part of the problem of uptake that
is addressed in this paper is validation: the proposals could be applied
to any form of modelling or simulation of complex systems.

Having identified the goals and scope of the validation problem, con-
ventional validation approaches are reviewed, and their appropriateness
for complex systems simulation is discussed. The need to validate many
aspects of a simulation (components, environment, interaction) and to
address both engineering and scientific aspects of validation, points to
the use of arguments of validity. This is illustrated using GSN argument
fragments.

Work on validity argumentation is ongoing within the CoSMoS project.
Research is addressing patterns and guidelines for validity argumenta-
tion, particularly in relation to calibration. In addition, arguments are
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being used in comparing simulations, and in comparing simulations to
published research results.

References

[1] R. Alexander, R. Alexander-Bown, and T. Kelly. Engineering safety-
critical complex systems. In Workshop on Complex Systems Modelling
and Simulation, pages 33–63. Luniver Press, 2008.

[2] P. S. Andrews, F. Polack, A. T. Sampson, J. Timmis, L. Scott, and
M. Coles. Simulating biology: towards understanding what the simula-
tion shows. In Workshop on Complex Systems Modelling and Simulation,
pages 93–123. Luniver Press, 2008.

[3] P. S. Andrews, F. A. C. Polack, A. T. Sampson, S. Stepney, and
J. Timmis. The CoSMoS Process, version 0.1. Technical Re-
port YCS-2010-450, Dept of Computer Science, Univ. of York, 2010.
www.cs.york.ac.uk/ftpdir/reports/2010/YCS/453/YCS-2010-453.pdf.

[4] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP
on the ERK signalling pathway using the stochastic process algebra
PEPA. Transactions on Computational Systems Biology VII, 4230:1–23,
2006.

[5] M. Calder, S. Gilmore, J. Hillston, and V. Vyshemirsky. Formal methods
for biochemical signalling pathways. In Formal Methods: State of the Art
and New Directions. Springer, 2008.

[6] M. Calder and J. Hillston. Process algebra modelling styles for biomolec-
ular processes. Transactions on Computational Systems Biology XI,
5750:1–25, 2009.

[7] S. Efroni, D. Harel, and I. R. Cohen. Reactive Animation: realistic mod-
eling of complex dynamic systems. IEEE Computer, 38(1):38–47, 2005.

[8] S. Efroni, D. Harel, and I. R. Cohen. Emergent dynamics of thymocyte
development and lineage determination. PLoS Computational Biology,
3(1):0127–0135, 2007.

[9] B. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage project:
Tools for multi-robot and distributed sensor systems. In International
Conference on Advanced Robotics, pages 317–323, 2003.

[10] T. Ghetiu, R. D. Alexander, P. S. Andrews, F. A. C. Polack, and J. Bown.
Equivalence arguments for complex systems simulations - a case-study.
In Workshop on Complex Systems Modelling and Simulation, pages 101–
140. Luniver Press, 2009.

[11] T. Ghetiu, F. A.C. Polack, and J. Bown. Argument-driven validation of
computer simulations – a necessity rather than an option. In VALID,
2010. to appear.

[12] P. Humphreys. Extending Ourselves: Computational Science, Empiri-
cism, and Scientific Method. Oxford University Press, New York, 2004.

[13] J. A. Clark J. Srivatanakul and F. A. C. Polack. Stressing security
requirements: Exploiting the flaw hypothesis method with deviational
techniques. In Symposium on Requirements Engineering for Information
Security, 2005.



Arguing Validation of Simulations in Science 73

[14] T. P. Kelly. Arguing safety – a systematic approach to managing safety
cases. PhD thesis, Department of Computer Science, University of York,
1999. YCST 99/05.
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Abstract. Gosper’s hashlife algorithm is adapted and applied
to a three-dimensional kinematic environment by simulating the
environment using interleaved simulation periods, each of which
can be modeled using a different set of cellular automaton rules.
Information about the global state of the environment is stored
in order to decide when to make a transition from one set of cel-
lular automaton rules to another. The adaptations are described
in the context of a specific environment but can be applied to
other similar environments.

1 Introduction

Bill Gosper’s ingenious hashlife algorithm [6] was originally applied to
Conway’s Game of Life. Gosper pointed out that it could be extended
to other geometries, dimensions and number of states per cell. The algo-
rithm has recently been applied to other cellular automata (CAs) using
the open source Golly CA simulator [1]. Self-replicating programmable
constructors (SRPCs) that were too large to implement or simulate us-
ing the technology available at the time of their conception have recently
been simulated using the hashlife algorithm [10, 9, 4, 7].

Usually when a constructing machine embedded in a cellular automa-
ton environment needs to make a new structure it does so by using CA
rules that are designed to allow empty space to turn into a component
part on demand: there is no “conservation of matter”. One reason for
this is that the CA environments that these systems are embedded in
do not have any model of motion: components and machines are fixed
in place.

If we introduce the constraints that component parts cannot be cre-
ated or destroyed or transformed into different types of component part
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then we must also provide a mechanism by which component parts can
be moved from one location to another.

If a constructing machine cannot create component parts on demand
then it must obtain them from its environment. Either the machine must
be mobile and able to seek component parts within its environment, or
individual parts within the environment must move around so as to
encounter the constructing machine which can then make use of them.

Additionally a constructing machine must be capable of positioning
component parts correctly relative to other parts in the machine being
constructed. Either the machine being constructed must be manoeuver-
able or the constructing machine must contain a subsystem (perhaps
the whole machine) which is capable of moving a component part to a
specific location.

These considerations lead to a strong case for bestowing mobility
not only upon component parts but also upon larger structures. Once a
means of moving structures in space is provided, we are faced with the
problem that a structure may fall apart when it is moved unless some
means of connecting neighbouring component parts is also provided.

These are among the considerations that led to the environment de-
scribed in Sect. 2.

2 A 3D Kinematic Environment with 6 Part Types

This section describes a discrete space, discrete time 3D kinematic simu-
lation environment called CBlocks3D. This is a development of the previ-
ously published 2D CBlocks environment [13], having a greatly reduced
set of component parts and not requiring any ability to create compo-
nent parts out of empty space. It can be regarded as an implementation
of the kinematic environment originally proposed by von Neumann [5].
There are 6 different types of part in the CBlocks3D environment: a sig-
nal propagation part (the wire part), a signal processing part (the nor
part), a part for moving other parts (the slide part), a part for rotating
other parts (the rotate part), a part for connecting other parts (the fuse
part) and a part for disconnecting other parts (the unfuse part). These
part types are chosen so as to be as simple as possible whilst spanning
the operations required for construction within the environment. Boolean
signals can pass between neighbouring parts. It takes one time unit for
a part to respond to an input signal. In a single time unit, a part may
move one unit in any one of six directions under the action of a slide
part. When a part moves, all parts directly or indirectly connected to it
also move.
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2.1 Describing parts

Standard notation from set theory is used in this section. Readers unfa-
miliar with this notation should consult reference [8] or [2].

We define six direction vectors

EAST = (1, 0, 0), WEST = (−1, 0, 0),
NORTH = (0, 1, 0), SOUTH = (0,−1, 0),
FRONT = (0, 0, 1), BACK = (0, 0,−1).

D denotes the set of these vectors

D = {EAST,WEST,NORTH,SOUTH,FRONT,BACK}.

We define the function

opposite((x, y, z)) = (−x,−y,−z).

L is the set {True, False}, and T denotes the set of part types

T = {wire, nor, slide, fuse, unfuse, rotate}.

A part is completely described by the tuple

(P.location, P.primary, P.secondary, P.type, P.output, P.connect)

where

P.location ∈ Z× Z× Z,
P.primary ∈ D,

P.secondary ∈ D \ {primary, opposite(primary)},
P.type ∈ T,

P.output ∈ L× L× L× L× L× L and
P.connect ∈ L× L× L× L× L× L.

P.location is a 3-tuple (x, y, z) that specifies the location of the part.
Two vectors are needed to specify the orientation of a part P in three

dimensional discrete space. The primary axis P.primary is a vector that
lies on the line from the centre of P to the centre of one face of P (this face
is referred to as the active face of P ). The secondary axis P.secondary is
perpendicular to the primary axis. For example, in Table 1 the primary
axis of each part points up the page (NORTH) and the secondary axis
points to the right of the page (EAST ).

The notation X[Y ] is used to refer to the Y th element of the tuple
X. It is convenient to use the direction vectors D to index the P.output



78 William M Stevens

and P.connect tuples, so we define that the vectors NORTH, EAST ,
SOUTH, WEST , FRONT and BACK can be used to index the 1st,
2nd, 3rd, 4th, 5th and 6th elements of a tuple respectively.

P.connect[d] ∈ L where d ∈ D specify the connectivity state of P . If
a part P is connected in a particular direction d to a neighbouring part
Q then P.connect[d] = True and also Q.connect[opposite(d)] = True.
If a part P is not connected to its neighbour Q which lies in direction
d, then P.connect[d] = Q.connect[opposite(d)] = False. If a part P has
no neighbour in direction d then P.connect[d] = False. When a part
is moved by a slide part all parts connected to that part also move. A
moving part P will also push a neighbouring part Q that lies in the
direction of motion of P , even if Q is not connected to P . A part can be
rotated by a rotate part regardless of its connectivity state. When a part
is rotated by a rotate part its connectivity state remains unchanged.

Boolean signals can pass between the faces of neighbouring parts.
Neighbouring parts do not need to be connected in order for signals to
pass between them. Each face of a part acts either as an input or as an
output. It takes one time unit for a signal to propagate from a part’s
inputs to its outputs or for a part to respond to signals at its inputs.
When we talk of the value of a signal at an input face of a part, this is
the value being output by an abutting face of a neighbouring part, or
False if there is no abutting face.

P.output[d] ∈ L where d ∈ D are the outputs of P . So for example
if we have an isolated nor part P with P.primary = EAST , the values
of its outputs will be P.output[EAST ] = True and P.output[d] = False
for all other d ∈ D.

Table 1 describes the function of each type of part. A graphical rep-
resentation is shown for each part type. In Table 1, the letters N , E, S,
W , F and B are used to refer to the value of signals at the NORTH,
EAST , SOUTH, WEST , FRONT and BACK inputs of a part. Any
output not specified in Table 1 has the value False. In these diagrams
NORTH is up the page, EAST is to the right of the page and FRONT
is out of the page. Note that the parts are shown here in one particular
orientation and the function of each part is described with respect to
this orientation. The Boolean ¬ (negation) and ∨ (OR) operators are
used in Table 1.

The wire, nor and rotate parts have rotational symmetry about their
primary axis and can therefore be in any one of 6 functionally distinct
orientations. The slide, fuse and unfuse parts have no rotational sym-
metry and can therefore be in any one of 24 distinct orientations.
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Wire Nor Slide

output[d] := S output[NORTH] := If S then move the
for d ∈ D \ {SOUTH} ¬(E ∨ S ∨W ∨ F ∨B) part that lies NORTH

one unit EAST

Fuse Unfuse Rotate

If S then connect If S then disconnect If S then rotate
the parts that the parts that the part that

lie NORTH and lie NORTH and lies NORTH through
NORTH-EAST NORTH-EAST 90 degrees

Table 1. Part types in CBlocks3D.

All parts except the nor part have a single input which is at the
SOUTH face in Table 1. The nor part has 5 inputs at the EAST ,
WEST , FRONT , BACK and SOUTH faces in Table 1.

A self-replicating programmable constructor made from approximate-
ly 60, 000 parts was implemented in this environment [12, 15]. The SRPC
collects parts from a disorganised collection in the environment and then
uses those parts to construct any specified machine, with self-replication
as a special case. The need to simulate this SRPC on inexpensive hard-
ware in a matter of days rather than weeks was the primary motivating
factor for developing an efficient simulation algorithm for the CBlocks3D
environment.

A brief description of an important subsystem of the SRPC can be
found in reference [14]. This subsystem is capable of identifying any part
presented to it.

3 Simulating the CBlocks3D Environment

When the CBlocks3D environment was first devised, a simulator was
developed that iterated over every part in the environment at each time
step to calculate the effect that each part had on other parts. The simu-
lator was later refined so as to simulate only those parts likely to change
state from one time step to the next.
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The fact that structures made from connected parts can move to-
gether in a single time step means that the environment cannot be di-
rectly implemented in a CA. In a CA the state of a cell one time step into
the future is affected by cells in a finite neighbourhood. In the CBlocks3D
environment a moveable structure can have any length in any dimension.
As a consequence of this one end of an arbitrarily long rod can end up
moving because the far end of the rod was acted upon by a slide part in
the previous time step.

Given that the CBlocks3D environment cannot be implemented using
a CA and that there is no difficulty in using other methods to simulate
it, there would be no cause for further consideration of CA were it not
for the existence of the hashlife algorithm. The potential performance
improvement that the hashlife algorithm offers, coupled with the knowl-
edge that several structures in the SRPC being simulated have a high
degree of spatial and temporal regularity, which ought to be capable of
being simulated in a more efficient way, strongly motivated further con-
sideration of whether CA techniques could be adapted to simulate the
CBlocks3D environment.

Although the possibility of arbitrarily sized moving structures means
that in general the environment cannot be implemented using a CA, it is
perfectly possible to simulate periods of time during which no movement
occurs using a CA. One possible end point of such a period is shown in
Fig. 1. Here a slide part is activated, and via its action on part A it will
cause structure B to move one unit to the right in the next time step. In
the first simulator that was written for the CBlocks3D environment an
algorithm was written to work out which parts in a structure move when
any part in the structure is acted upon by a slide part. This algorithm
worked by propagating movement information from one part to another
in a similar way to the way that information is propagated in a CA.
This led to the realisation that a separate set of CA rules can be used to
propagate movement information from one part to another, and another
set can be used once all movement information has been propagated to
carry out the movement operation.

4 An Algorithm Based on Gosper’s Hashlife

Firstly we devise a set of CA transition rules for carrying out all oper-
ations except movement of parts in the CBlocks3D environment. These
rules will allow any simulation to be carried forward to a state where
movement of parts is about to occur. This set of transition rules is re-
ferred to as the NORMAL set.
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Fig. 1. Structure B is about to be moved by the slide part.

Then we devise a second set of CA transition rules that allow infor-
mation about movement to propagate from one part to another. This set
is referred to as the PROPAGATION set. A third set of transition rules
is used to perform movement. This set is referred to as the MOVEMENT
set.

After this we show how information about the global state of the
environment can be used to decide when to switch from one set of rules
to another. The hashlife algorithm is then modified to allow results cal-
culated from all three sets of CA rules, as well as state information for
subregions of the environment, to be incorporated into the same data
structure.

There are some possible conflicts in these rule sets: it is possible for
two parts to be acted upon by both a fuse part and an unfuse part at
the same time, and for two or more active rotate or slide parts to act
upon the same part. Further discussion of these conflict situations and
how they may be dealt with is deferred to Sect. 5.

The NORMAL set of CA rules is by far the most complex of the
three. It is given as a set of If-Then rules below.

Two parts are neighbours when they have abutting faces. Two parts
are diagonal neighbours when they share a single edge. Graphical ex-
amples are shown beneath each rule. The graphical examples are not
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intended to cover all possibilities encompassed by each rule, but rather
to aid the reader in understanding the rules. Small gray circles are used
to indicate True outputs. In the rules that deal with connectivity a small
gap between parts is used to show that they are not connected. In the
rule concerning the slide part, a grey circle with an arrow in it is used
to indicate a part that is marked for movement.

In these rules P refers to a part occupying a cell. These rules show
how P changes state from time t to time t+1. If no rule is applicable then
a cell remains unchanged. Any outputs of P not explicitly mentioned in
these rules are set to False.

If P.type = wire and the input of P faces an output of a wire or nor
part outputting a True signal then P.output[d] = True for d ∈ D \
{opposite(P.primary)} at t+1. Otherwise these outputs will be False
at t+ 1.

If P.type = nor and any of the inputs of P face an output of a wire
or nor part outputting a True signal then P.output[P.primary] =
False at t+ 1. Otherwise P.output[P.primary] = True at t+ 1.

If P has a rotate part R as a neighbour and R.primary points toward P
and the input of R faces an output of a wire or nor part outputting
a True signal then P will rotate through 90 degrees anticlockwise
about R.primary by t + 1. Note that the state of the P.connect
tuple is not changed by a rotation.
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If P has a fuse part F as a neighbour and F.primary points toward P
and the input of F faces an output of a wire or nor part outputting a
True signal and P has a neighbour Q in the direction of F.secondary
then at t+ 1 P and Q will be connected.

If P has an unfuse part F as a neighbour and F.primary points to-
ward P and the input of F faces an output of a wire or nor part
outputting a True signal and P has a neighbour Q in the direction
of F.secondary then at t+ 1 P and Q will be disconnected.

If P has a fuse part F as a diagonal neighbour and F.primary points
toward a neighbour Q of P and the input of F faces an output
of a wire or nor part outputting a True signal and P.location −
Q.location = F.secondary then at t+ 1 P and Q will be connected.
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If P has an unfuse part F as a diagonal neighbour and F.primary
points toward a neighbour Q of P and the input of F faces an output
of a wire or nor part outputting a True signal and P.location −
Q.location = F.secondary then at t+1 P andQ will be disconnected.

If P has a slide part S as a neighbour and S.primary points toward P
and the input of S faces an output of a wire or nor part outputting
a True signal then mark P as a part to be moved in the direction of
S.secondary.

The shape of the neighbourhood used by this set of rules is shown in
Fig. 2.

The last rule above concerns the action of slide parts and introduces
the possibility of a part being marked as due to move in a particular
direction. The PROPAGATION set of rules, listed below, propagates
this marking information.

If P is connected to neighbour Q and Q is marked as due to move in
direction d then mark P as due to move in direction d.

If P has a neighbour Q in direction e and Q is marked as due to move
in direction d = opposite(e) then mark P as due to move in direction
d.
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Fig. 2. The shape of the neighbourhood used by the NORMAL set of rules.

The MOVEMENT set of rules then uses the marking information to
carry out movement:

If a cell C has a neighbour P in direction e and P is marked as due to
move in direction d = opposite(e) then P will be moved into C.

Both the PROPAGATION and MOVEMENT sets have a 3D von
Neumann neighbourhood.

In order to decide when to switch between one set of CA rules and
another we need to know the following information about the environ-
ment:

Condition 1 There is at least one part in the environment that is
marked as due to move.

Condition 2 Running the PROPAGATION set of rules will not result
in any changes (i.e. propagation is complete).

Simulation proceeds using the NORMAL set until Condition 1 be-
comes true. Then simulation proceeds using the PROPAGATION set
until Condition 2 becomes true. Then a single iteration of the MOVE-
MENT set is run, before switching back to the NORMAL set.

A readable explanation of Gosper’s algorithm is given in reference
[11]. Extrapolating directly from Gosper’s 2D algorithm, a 3D hashlife
algorithm for a CA with a 3D Moore or von Neumann neighbourhood
uses an octree data structure to represent the state of a universe, where
a level-n node in the tree represents a cube 2n cells on a side. Each node
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contains pointers to eight sub-cubes, each 2n−1 cells on a side. Whenever
two or more level-n nodes would represent identical configurations of
cells, a single node is used with two or more pointers at level-n + 1
pointing to the same node. A RESULT pointer either points to nothing,
or else to a cube 2n−1 cells on a side containing the result of simulating
the inner cube 2n−2 steps into the future. Whenever a node is formed, a
hash value is calculated based on its contents and it is stored in a hash
table for future use should an identical node be formed in future. The
main advantage conferred by the hash table is that nodes within it are
likely to contain already-computed RESULT pointers.

Whereas Gosper’s algorithm simulates 2n−2 steps forward for a level-
n cube, we cannot do this for the CBlocks3D environment. One reason
for this is that the NORMAL rule set has a neighbourhood with some
cells two units away from the central cell. Therefore calculations of the
future state of level-0 nodes may require information from neighbours
that are not visible until level-3. For this reason the 4 by 4 by 4 cube
that is the result of simulating an 8 by 8 by 8 cube is one time step
into the future of the larger cube (rather than 2 as would be the case
for a Moore or von Neumann neighbourhood). Furthermore if we are
stepping forward in time using the NORMAL rule set at a rate of k time
steps per octree calculation step then at some time between t and t+ k
we may need to switch to the PROPAGATION set. We need to detect
when this occurs, back-track to time t and then step forward more slowly
until we reach the time when we need to switch to the PROPAGATION
set. To reduce the amount of back-tracking that is required, we limit the
distance into the future that the algorithm can calculate to 16 time units
by ensuring that a doubling of the simulation time-step-size only occurs
at levels 4,5,6 and 7 (whereas in hashlife doubling occurs at every level).
Because of the above mentioned need to back-track and step forward
slowly, we also allow results to be calculated with no time-doubling at
all, so that simulation can proceed at a rate of one time step per octree
calculation step.

Condition 1 and Condition 2 mentioned above can be calculated in
a hierarchical way by storing these conditions in each node, and then
combining them to calculate the conditions for a higher level node.

These considerations lead to the following structure for a single octree
node, expressed using the C programming language:

#define EMPTY_FLAG 1
#define NOTPROP_FLAG 2
#define PROPSTATIC_FLAG 4
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#define CALCINDEX_CALC 0
#define CALCINDEX_CALC2 1

typedef struct otNode
{

unsigned char level;
unsigned char flags;
otNode *calc[2];

union
{

block leaf;
struct otNode *children[2][2][2];

} u;

struct otNode *next;
} otNode;

The level member is not strictly necessary, since so long as the level
of the highest level node is known, any algorithm operating on a universe
can work out which level it is operating on.

The flags member has bits for recording whether or not the node
is empty (EMPTY FLAG), whether or not Condition 1 is true (NOT-
PROP FLAG) and whether or not Condition 2 is true (PROPSTATIC
FLAG). The set/reset sense of each of these flags is chosen so that flags
from sub-nodes can be combined by a bitwise AND operation.

The calc member is used to store the result of simulating either one
application of a CA rule set (CALCINDEX CALC) or multiple applica-
tions (CALCINDEX CALC2). Note that it is not necessary to have sep-
arate members of calc for the NORMAL, PROPAGATION and MOVE-
MENT rule sets because for a given configuration of cells only one of
these rule sets will result in a change. Specifically, the NORMAL rule
set will never be applied to any configuration of cells containing cells
marked for movement. The PROPAGATION and MOVEMENT rule
sets, when applied to any configuration of cells not containing any cells
marked for movement, will result in no change. The PROPAGATION
rule set will also result in no change when applied to a configuration
of cells where movement information is already fully propagated. When
the application of a rule set to a configuration is known to result in no
change the calc member is not used, instead the unchanging result is
formed from the central sub-sub-nodes of the node in question.
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For level-0 nodes the leaf member contains all information about the
state of a single cell. This information fits into 18 bits as follows:

Part type: 3 bits
Part orientation: 5 bits
Output state: 1 bit
Connectivity state: 6 bits
Movement propagation direction: 3 bits

For higher level nodes the children member contains pointers to subn-
odes.

The next member is not part of the representation of an environment,
but is used for making lists of nodes which are used both in the hash
table and also for keeping track of unused nodes.

5 Discussion

5.1 Conflicting operations

The CA rule sets described in Sect. 4 do not behave in a consistent way
when an attempt is made to carry out two or more conflicting operations
on a part at once, such as attempting to move a part in two different di-
rections at the same time. The original implementation of the CBlocks3D
environment did cater for these situations, and they were dealt with as
follows:

- Any attempt to both connect and disconnect two parts at the same
time results in no change in their connectivity state.

- Any attempt to rotate a part about two different axes at the same
time results in no change in its orientation.

- Any attempt to move a part in two different directions at the same
time results in no movement of the part in question – effectively the
movement operations that caused the conflict are cancelled.

- Any attempt to move two or more parts into a single empty cell results
in no movement of the parts in question – effectively the movement
operations that caused the conflict are cancelled.

The two movement-conflict situations listed above are more subtle
than they may at first appear. A comprehensive discussion of the is-
sues involved was carried out by Arbib [3]. Arbib attempted to devise a
resolution strategy that is more complex than the one described above
and which aims to produce behaviour that more closely approximates
the motion of rigid bodies under Newtonian mechanics within the limits
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of a discrete space environment. For example, Arbib stipulated that an
attempt to move a part in two orthogonal directions would succeed and
would result in the part moving diagonally. His detailed analysis ends
with the sentence ‘I hope this formulation is contradiction free’, so it is
not clear whether he succeeded.

Clearly there is more than one choice of conflict resolution strategy
and the extent to which movement-conflicts can be efficiently handled
within a given simulation framework depends upon the choice of strategy,
which in turn depends upon the reason why a system is being simulated.

One of the simplest strategies is not to resolve movement-conflicts
or any other conflicts at all, but instead to declare, as part of the defi-
nition of the CBlocks3D universe, that conflicts are illegal and that no
well designed mechanism should cause them to arise. This was done in
the context in which the CBlocks3D environment was first used [12].
This approach is adequate when using the environment to simulate well
designed mechanisms with predictable behaviour, but would not be suit-
able if one were simulating a system with unpredictable behaviour where
conflicts could not be ruled out.

5.2 Performance

The original simulator for the CBlocks3D environment, mentioned in
Sect. 3, was capable of simulating the SRPC system at an average rate
of about 50 iterations per second on the hardware available at the time.
At this rate simulation for a complete replication cycle (220 million iter-
ations) would have taken over six weeks. On the same computer system,
using 3.5 Gb of RAM for the hash table, a hashlife-based algorithm was
able to carry out the same simulation in 10 days at an average rate of 250
iterations per second. The algorithm has been improved since this sim-
ulation was carried out, so the same simulation would now be expected
to take about 4-5 days.

Table 2 shows the effect that varying the memory available to the
algorithm has on performance. This table is based on simulating the
first 2 million time steps of the operation of the SRPC mentioned at the
end of Sect. 2.

The complete source code for the algorithm described in this paper
is available from:

http://www.srm.org.uk/downloads/CBlocks3DHash.zip
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Number of nodes available Memory used Iterations per second

2× 106 88 Mb 125

4× 106 175 Mb 201

6× 106 263 Mb 272

8× 106 350 Mb 313

10× 106 439 Mb 345

15× 106 658 Mb 396

20× 106 877 Mb 428

30× 106 1316 Mb 559

40× 106 1754 Mb 563

50× 106 2193 Mb 620

Table 2. Effect of varying the number of nodes on simulation speed.
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Research carried out on the CoSMoS project3 has touched on various
aspects of complex systems modelling and simulation. This includes nu-
merous and varied case-studies (see [3] for a summary), methodology of
simulation construction [1], and the development of tools and techniques
for simulation construction [2]. The content of this abstract provides a
summary of the experiences of working with complex systems by the core
team who have carried out the research. The aim is to provoke further
thought and discussion on a range of issues regarding complex systems.
The abstract is structured around two main themes: researching com-
plex systems is ultimately rewarding and interesting, but can prove to
be challenging.

First we highlight a number of general issues that make working with
complex systems an interesting and rewarding activity:
Questioning: the types of question asked about a complex system in
order to construct models and simulations can often challenge domain
knowledge. Such questions might examine aspects of the domain that
are not typically the subject of focussed research.
Collaborations: researching complex systems is a truly transdisci-
plinary activity. Not only do researchers from different domains collab-
orate to investigate complexity, but various engineering techniques are
employed to construct tools for scientific inquiry. Collaborations also al-
low the cross-fertilisation of insights into the nature of complexity that
arise in different disciplines.
Engineering: the development of tools and techniques to investigate
complex systems can be directly applicable to more engineering activi-
ties. Large-scale engineered systems, such as the Internet, are becoming
3 Funded by EPSRC grants EP/E053505/1 and EP/E049419/1, and a

Microsoft Research Europe PhD studentship. See http://www.cosmos-
research.org
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increasingly complex themselves, and will benefit from complexity re-
search.

Tools for Discovery: simulations of complex systems can be used both
to study specifically posed question, and for generating hypotheses that
can be used to explore the real system. Often simulation tools can be
used in an ad-hoc manner to discover interesting and emergent properties
of the system.

Insights: we can often gain insights into complexity where similari-
ties are observed between examples of complex systems that are not
obviously related. A defining quality of complexity science is the under-
standing gained of the subject through observation of complex systems
examples. We also appear naturally drawn to visual examples of sys-
tems with non-trivial structures and dynamics, even if they are simply
engineering artefacts.

We now outline below a number of general issues that have been
challenging and hindered our work with complex systems:

Terminology: “complex systems” and associated terms such as “emer-
gence” and “validity”, have, to a large degree, evaded rigorous definition.
This can hinder communicating research, hide the real meaning of re-
sults, or conceal a lack of understanding of the system under study.

Uncertainty: due to their very nature, the complex systems we study
often contain many more uncertainties than certainties. This makes mod-
elling a difficult art that involves a large set of assumptions to be made.
Claims made about complex systems research results often fail to prop-
erly account for assumptions and uncertainties.

Scalability: it can often be difficult to approach the level of scale (for
example the number of entities) required to study a complex system
using a simulation. This can be complicated by complexity arising at
differing and multiple scales.

Communication: interaction between different roles in developing com-
plex systems simulations is vital, but often difficult to achieve. This is
amplified when communicating work across disciplines. There can also
be a lack of openness in research (failure to release computer code and
document all tools and techniques) that can hinder reproducibility.

Reflection: it is rare to see introspection in the world of complex sys-
tems that questions what we are doing and the approaches we are taking.
Such introspection should address the hard issues highlighted above, pro-
viding guidance based on personal experience.

In this abstract we have outlined in brief a series of issues that we have
found both difficult and rewarding when working with complex systems.
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The purpose is to reflect on the nature of complex systems research from
our personal experience, which may serve as a starting point to consider
what the future of complex systems research could be.
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In traditional chemotherapy, anti-cancer drugs are used to target and
kill rapidly dividing cells. However, only a fraction of the cells die from
the treatment. In order to reduce the size of the tumour, repeated doses
must be administered [3]. By simulating this procedure in a model that
accounts for chromosome missegregation as the main drive for cancer
progression new insights can be developed.

Previous work created an individual-based model that exhibits emer-
gent cancer-like behaviour through the interaction of abstracted cancer
genes in cells [1]. Throughout the simulation, individual cells may divide,
die or remain alive, depending on the interactions between the number
of abstracted genes that make up cells and the conditions of the system
(Fig 1.a). Each cell has a genome (Fig 1.b and Fig 1.c), composed of
3 kinds of genes distributed across homologue chromosomes: Apopto-
sis Regulatory (AR), Cell-Division Regulatory (CDR) and Chromosome
Segregatioin Regulatory (CSR) Genes, interacting through the algorithm
described in Fig1.a. If dividing, the cells have a probability of missegre-
gating entire chromosomes and thus generating daughter cells with ab-
normal DNA content and gene expressions. Previous work demonstrated
that through chromosome missegregation events, the cells evolve cancer-
like genotypes with unlimited proliferation and avoidance of death [1].
This is achieved by abstracting oncogene activation (increased number
of copies of cell-division regulatory genes) and the loss of tumour sup-
pressor genes (decreased number of apoptosis regulatory genes).

It is of importance, both biologically and clinically, to investigate the
effects that chromosome missegregation and aneuploidy – the cellular
state of having an abnormal number of chromosomes – have in cancer
drug treatments [2]. Making use of this framework, in silico experiments
were carried out to simulate the interaction between cancer treatments
and chromosome missegregation on two configurations of cancer-like sys-
tems (Fig. 1.b and Fig1.c). A cancer drug that kills all cells entering in
mitosis for 2 consecutive time steps was simulated. In Treatment A, the
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Fig. 1. a) Algorithm for each time step b) Gene Configuration I genotype leads
to a cancer-like behaviour. Treatment A is administered at time steps 30, 50
and 70. Treatment B is administered at time steps 50, 70 and 90. c) Gene
Configuration II and its response to the different treatments.

cancer drug was administered 3 times during the simulation at time steps
30, 50 and 70. In Treatment B, administration took place at time steps
50, 70 and 90. These experiments were carried out for the 2 gene con-
figurations. Results suggest that, for Gene Configuration I (Fig. 1.b),
the drug has a positive effect if administered earlier. Because in this sys-
tem an over-proliferating oncogene has more chance of being activated
first, as shown in previous work [1], eradicating cells initially has a direct
impact. For Gene configuration II (Fig. 1.c), when cancer initiation is
due to the loss of a tumour suppressor gene, this kind of treatment is
more consistent regardless of the time of administration. Work is ongo-
ing on a more detailed evaluation of the relationship between genome
configuration and the success of different treatment strategies.

Models are needed to help explore the poorly understood role of
chromosome missegregation in cancer progression and treatments [4].
Results show that cancer-like systems with different kinds of aneuploidy
respond differently to cancer treatments. Work is ongoing to adapt the
models to simulate other cancer treatments.
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The human vascular system is maintained through the self-organising
behaviour of a vast population of cells, regulated through local inter-
actions. Pathological states such as chronic myeloid leukaemia (CML)
emerge from the accumulation of cellular malfunctions within this popu-
lation, with dynamics which appear similar to that of selective evolution;
however, biologists are still unclear exactly what conditions are required
(or precluded) for this to occur.

Our work simulates and visualises these interactions, with the inten-
tion of generating testable hypotheses as to the causal networks which
give rise to chronic cellular proliferation, as well as more typical be-
haviours such as cellular migration and homing. Adopting the agent-
based paradigm, we argue, allows a biologist to accurately represent the
formation dynamics of a process, encouraging a system-level conceptu-
alisation of the domain and closing the cognitive gap between model and
reality.

This poster portrays the trajectory of our research, outlining the
motivations and methodologies for moving from an equation-based to
agent-based paradigm with formal methods. We describe a new agent-
based simulation framework, which harnesses GPU acceleration in order
to radically increase the scale of system that we are able to model. Fi-
nally, we discuss our current work in validating simulation results based
on clinical data.
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