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Abstract
Computing techniques are increasingly being used in sci-
entific research to tackle a diverse set of problems. An ex-
ample is complex systems research, which focuses on the
use of computer simulations to explore, understand and de-
scribe the real-world system under study. These simulations
are often sophisticated pieces of software with numerous de-
sign trade-offs between performance and ease of develop-
ment and use. We propose a simulation framework for com-
plex systems simulation that allows each component of a
simulation—for example visualisation, or data analysis—to
be developed in the most appropriate language. The frame-
work uses the concept of shared objects to communicate data
between simulation components. We present here a detailed
motivation for multilingual simulations, an outline design
and prototype for the simulation framework, and discuss fu-
ture plans for the framework.

1. Introduction
Numerous computing techniques exist to help scientists
tackle a wide variety of research problems. One technique
that is becoming increasingly popular in complex systems
research is computer simulation. Complex systems are char-
acterised by elaborate behaviours at the system level that are
a consequence of the more simple behaviours of the system
components. Importantly, the high-level system behaviours
are not obviously deducible as the sum of the low-level com-
ponent behaviours. This property is often described in com-
plex systems research (complexity science) as emergence.

Complex systems simulation is used to explore, under-
stand or describe emergent system behaviours. Typically
this involves simulating real-world complex phenomena
from any number of scientific disciplines including biology,

chemistry, physics and sociology. Complex systems simu-
lation may also be applied to investigate complex systems
themes and behaviours that transcend any specific subject,
for example the property of self-organisation.

One popular approach to constructing simulations of
complex systems is agent-based simulation (ABS). To con-
struct an ABS, components of the real-world system are
first modelled as (populations of) individuals (the agents)
that interact with each other in an environment. In the ABS,
the agents are expressed as separate computational entities
within an encoding of the identified environment. A clas-
sic example is the simulation of bird flocking. Here each
agent is a simulated bird that adjusts its behaviour depending
on neighbouring bird agents and environmental conditions
such as the weather. Execution of the ABS aims to generate
the system-level emergent behaviours that are the object of
study, in this case, a bird flock.

The CoSMoS project1 is working towards developing
tools and techniques to assist the simulation of complex
systems. Specifically, the project aims to develop two main
outputs: an agile process to capture best-practice in simula-
tion construction and use [1]; and a simulation framework
for running highly-concurrent and parallel agent-based sim-
ulations. This latter output forms the subject for this pa-
per, which examines how shared object data can be used
to construct simulations that exploit the relative advantages
of different programming models and languages. In order
to achieve our aims, we are working with real scientists
on a number of complex systems case studies to ensure
that our approach is useful on real-world systems. Examples
of the case studies we are working are summarised in [4],
and include numerous immune systems investigations, plant
growth, social modelling, and electricity networks.

This paper is concerned with the complex systems subset
of scientific computing and explores the rationale for want-
ing multilingual simulations. Using concepts from object-
orientation (OO) we can produce scientific simulations that
use any number of programming languages, both OO lan-
guages and others. Here we use both process-oriented and
OO languages. The paper describes ongoing work to develop

1 http://www.cosmos-research.org/
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a generic framework uses shared objects to achieve com-
munication between different components of the simulation,
which can be implemented in any suitable programming lan-
guage. Using our numerous case-studies we have been ex-
ploring general requirements for complex systems simula-
tions. The desire for multilingual simulations has arisen from
developing these case studies and wishing to use the most
appropriate tools for the job.

The paper is organised as follows: section 2 examines
our motivation for wanting to develop multilingual simu-
lation; section 3 outlines a general design for our simula-
tion framework, and then describes and critiques our current
prototype implementation; section 4 outlines the benefit of
being able to develop multiple implementations of complex
systems simulations; and section 5 concludes the paper by
exploring the future directions of our simulation framework.

2. Motivation
Simulators to explore complex systems are most often de-
veloped by individuals or small teams as bespoke tools that
attempt to address a specific set of research questions. The
simulators are used to perform in-silico experimentation that
provide insight into the real-world complex systems domain.

Like many pieces of complicated software, the simula-
tions we develop to study complex systems consist of numer-
ous components. The core simulation represents the model
of the science of which we are interested. In the majority of
our case studies, this is implemented as an ABS (outlined
above). Other simulation components allow us to visualise
and interact with the core simulation. For example a graph-
ical user interface can contain any number of visualisations
of executing ABS and an analysis of the data it generates.
We also need to interact to configure the core simulation
both on initialisation of the simulation and when changing
parameters during execution. Another major component of
complex systems simulations is the extraction of different
types of data that describe its execution. This data (the sim-
ulation results) can be used to analyse the behaviour of the
simulation and subsequently draw conclusions about the un-
derlying scientific system in the real world.

Analysis of simulation data can either happen whilst the
simulation is running, but is more often reserved for a post-
simulation activity Agent-based simulations often make use
of stochastic techniques, with behaviours expressed using
weighted random choices. Consequently, in-silico simula-
tion involves the collection of data from multiple simula-
tion runs to build up a statistical picture of the overall be-
haviour of the system. Coupled with the fact that these mod-
els are heavily parameterised, exploration of the simulation’s
behaviour may involve thousands of individual runs. These
runs are independent so we can make use of clusters to
achieve parallelism (an embarrassingly parallel problem),
and achieve results in a sensible time frame.

The different simulation components allow us to interact
with the simulation in different ways, at different stages of
our research. Three of the main ways we interact are:

Development: many of our simulations are representative
of systems that have spatial and temporal dimensions
that make them open to visualisation. During develop-
ment, visualisation is a natural and time saving debug-
ging tool. As we are interested in emergent behaviour
that results from the interaction of numerous agents in
complex sytems, small errors in agent behaviour can pro-
duce macroscopic errors in the system as a whole during
runtime. Being able to see both the individual agent be-
haviours and macroscopic behaviours in a single visuali-
sation highlights such errors.

Interactive investigation: simulations are often highly con-
figurable with a vast space of possible parameters and so-
lutions. Interacting with simulations (for example chang-
ing parameters on the fly) can help explore this param-
eter space and narrow the space of solutions to be ex-
plored. Such simulation runs are explorative and help us
gain knowledge of the system through visual feedback.

Batch experimentation: in the majority of instances work-
ing with simulation, we wish to create a statistical pic-
ture of certain behaviours to present as results that can
then inform our scientific investigations with respect to
the real domain. This requires numerous simulation runs
to generate the necessary data. The types of complex sys-
tems simulation we deal with often include stochasitc ele-
ments increasing the requirement for batch experimenta-
tion. The key to these types of experiments is that they are
run without a GUI, but concentrate on generating data.
This data must be collected and suitably analysed.

Programming language choice for complex systems sim-
ulations depends on numerous factors. Often we rely on a
single choice of language to develop all simulation compo-
nents from the ground up with little code reuse. The choice
of language may be a general-purpose programming lan-
guage such as Java, Python, Fortran or C++, or it may be
a language with features designed specifically to support
simulation, such as NetLogo or the stochastic π-calculus.
Generic simulation environments and libraries also exist for
a number of general purpose languages that support the rapid
development of simulations. Examples include the Mason li-
braries for Java and the Breve simulation environment.

In other circumstances, we might employ more than one
language in an ad hoc simulation pipeline, especially in the
case of batch experimentation. Here the simulation core is
written in a general purpose or domain specific language,
and a scripting or dynamic language (shell script, Perl,
Python, Ruby etc.) used to control multiple simulation runs
and collection of data. This data is then analysed with these
languages or other languages designed for processing such
data such as Matlab and R.
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Figure 1. Object store

It is obvious that different languages have different
strengths and weaknesses; C++ and Fortran offer high per-
formance for numerical operations, whereas Python, Perl
and Ruby are expressive and have great IO capabilities en-
abling more rapid development. Different languages also
have differing levels of support for libraries and interfacing
with other tools.

Owing to the differing component requirements of our
simulations it is infeasible to select a single language that is
equally good for each simulation component. Without access
to tools that make developing multilingual simulations a
reality, the choice of languages for developing simulations
may depending on the developers preference for a particular
language or the language that offers the best compromise.

Ultimately, it is our intention, that we should be able
to choose the most appropriate languages for the different
components that our simulations will entail. This should lead
to increased productivity and a move away from the ad hoc
ways we have mixed languages in simulation design to date.

3. A Simulation Framework
3.1 Proposed Design
We propose that simulations should be built to communi-
cate with a shared store of simulation objects: entities within
the simulation that are of interest for interaction, visualisa-
tion or analysis, such as agents or environmental proper-
ties (figure 1). Simulations can create and destroy objects
in the store, and set their properties. Other tools can query
the store for information about objects, extracting the in-
formation needed for analysis and visualisation. While the
store only holds the current state of the objects—not their
history—it is aware of the virtual time within the simula-
tion, allowing clients to obtain a consistent view of the state
of the simulation.

The store therefore combines properties of a database and
a publish/subscribe system: it can be thought of as a conduit
for information about simulation objects that flows out of the
simulation and into other tools. Objects have unique identi-
fiers, allowing references between objects. The structure of
objects within the store may be entirely dynamic, or make
use of datatypes defined ahead of time; the latter would al-
low more efficient, nuanced queries of the store (e.g. “find all
the pine trees”), although techniques developed for NoSQL
databases may be applicable.

Since the store is external to the simulation, it can serve
simulation and analysis clients written in any language; it
is only necessary to provide a client library for the desired
language. As the majority of programming languages pro-
vide facilities for binding to native libraries, the easiest ap-
proach is to write a C or C++ client library, then write thin
wrappers around that for target languages—although greater
efficiency or convenience may be achieveable in some lan-
guages using a “pure” approach without a native library.

We believe that this approach can make simulations more
accessible to users who are not expert programmers. A sci-
entific simulation exists to serve the purposes of a domain
expert: a scientist with expertise in the system under study.
While domain experts are often highly skilled in the use of
specialised data analysis tools such as MATLAB or R, most
have little or no experience of software development [3]. Us-
ing a multilingual framework for simulation allows scientists
to interact with and extract data from their simulations with-
out needing to be able to program in the languages normally
used for high-performance simulation. They can instead in-
teract with the system using simpler scripting languages
(such as Python), or directly using the tools with which they
are already familiar (such as MATLAB)—removing a sig-
nificant barrier to entry.

The separation of the objects in the store from the com-
ponents that read and modify them is essentially an imple-
mentation of the Model-View-Controller pattern. It allows
us to view the results of the simulation in several different
ways concurrently by using multiple visualisations—or to
view different simulations through the same visualisation.
We will explore the implications of this later. The model in
this case is not the platform model that the simulation is an
implementation of, but a data model that only contains the
output from the simulation.

3.2 Prototype Implementation
At present, the prototype implementation of our framework
allows us to integrate simulations written in occam-π with
visualisation and analysis components written in Python.
We have used both languages in a number of CoSMoS case
studies.

occam-π is a programming language based on the prin-
ciples of CSP and the π-calculus [7]. occam-π’s excel-
lent support for safe, lightweight, message-passing concur-
rency and its highly-efficient multicore runtime system make
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it straightforward to build agent-based simulations where
agents are implemented directly as lightweight processes.
Such process-oriented simulations automatically make good
use of modern multicore processors, and can be distributed
over clusters of machines [5, 6]. However, occam-π’s limited
set of data types and lack of bindings for external libraries
makes data analysis and visualisation more complex than in
other languages.

Python, on the other hand, is a “scripting” language:
it trades lower performance for greater expressivity and
ease of interfacing to other tools and libraries. Python’s dy-
namic type system and well-stocked standard library allows
programming in imperative, object-oriented and functional
styles using sophisticated data structures. Furthermore, there
are a wide range of Python add-on modules that are useful
for scientific computing: for example, SciPy and NumPy
provide high-performance mathematical operations based
upon bindings to standard libraries such as LINPACK, mat-
plotlib allows interactive plotting of data, and RPy allows
direct interfacing to the R statistical computing system.

The prototype provides a simple, unstructured store of
simulation objects, implemented in Python (figure 2). Each
object is represented as a Python dictionary; the only struc-
ture imposed is that all objects must have an id field con-
taining their unique identifier, and a type field containing
a string (such as tree). The simulation sends messages to
the store across a pipe in order to update the object database
according to a simple protocol:

Register: add a simulation object to the store, taking a type
and (optional) identifier;

Unregister: remove a simulation object from the store;

Attribute: add or update an attribute on an object;

Timestep: advance the current virtual time in the simula-
tion.

Visualisation and analysis components are currently writ-
ten as Python plugin modules that are loaded by the store.
Any number of components (including zero) can be sup-
plied. Each component is notified when the timestep changes,
and has access to a consistent snapshot of the objects in the
store as if they were Python objects—for example, an ob-
ject obj’s type is accessible as obj.type. Components can
retrieve an object with a particular identifier, iterate over all
objects, or iterate over objects of a specific type. The simula-
tion can continue to run while components analyse the data
from the previous timestep, with property changes only be-
coming visible once the analysis for the next timestep starts.

The occam-π client interface makes use of a number of
concurrent processes to allow object property encoding to be
parallelised (figure 3). A simulation typically contains many
agent processes, representing entities in the simulation. For
each agent that wishes to appear as a simulation object in
the store, a corresponding object server is created; local
variables are bound into object properties using occam-π’s

Object Store

Python

{Simulation Objects}

{Object Types}

Time Step

Core Simulation
occam-π 

Visualisation
Python 

Data Analyser
Python 

Figure 2. Current design of simulation framework

Object
server

Object
server

Object
server

Object
server

Simulation server

To object store

Agent
process

Agent
process

Agent
process

Agent
process

Figure 3. occam-π interface to the object store

abbreviation system. This encodes property values from the
agent into store protocol messages, and passes them to the
simulation server over a shared communication channel,
which batches them together and sends them over the pipe to
the store. The simulation server engages in the simulation’s
virtual time mechanism, and inserts timestep messages into
the data stream at the appropriate points.
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3.3 Evaluation
We have used the prototype framework successfully in a
real-world scientific simulation of granuloma formation in
the liver, with a high-performance simulation in occam-
π coupled to analysis components in Python. We used
PyGame—which provides Python bindings for the SDL
cross-platform graphics library—to produce a live visualisa-
tion, with the visualisation code being significantly shorter
and simpler than a previous attempt at an occam-π visualisa-
tion. During this work we have identified some shortcomings
with the prototype.

The simulation includes many thousands of simulation
objects representing segments of blood vessel, all of which
report state changes to the store on each timestep. Profil-
ing shows that the store is actually the performance bot-
tleneck here: the message parsing code, written in Python,
takes up the bulk of the time in the simulation as a whole.
This is obviously not ideal, since we would normally expect
the computation-heavy simulation to be the bottleneck; we
would also prefer that the simulation programmer not have
to worry about how often their results are made visible to the
store.

The unstructured nature of the object store makes it very
simple to put data in the store, but complicates the process
of retrieving results for analysis: a visualisation component
may retrieve an object without knowing exactly which fields
it includes. We could make objects return a dummy value
for requested fields that have not yet been provided, but
this would only push the problem further down the chain;
instead, we could require the simulation author to specify
the results model for the simulation explicitly, which would
not be especially arduous, and would offer advantages for
documentation and debugging too.

4. Multiple Implementations
Engineering a correct, high-performance simulation of a
complex system often involves a considerable amount of
work. Before investing time in creating a final version of
a simulation, it is often useful to write a quick prototype,
which can be used to verify that the model has the desired
properties, and to perform initial calibration of parameter
values. In agile software engineering terms, this kind of
proof-of-concept prototype is a spike solution.

As performance is not a great concern for a prototype, an
expressive language such as Python can be used, allowing
rapid development and easy modification of the prototype.
Developing a prototype often eases the development of a
final implementation by allowing multiple implementation
approaches to be explored. The prototype may even make
the development of the final simulation unnecessary—for
example, if a fatal flaw is found in the model, or if the
performance of the prototype is shown, after testing, to be
adequate for the required experimentation.

Using our simulation framework, a prototype simulation
can be treated in exactly the same way as the final simula-
tion: analysis and visualisation tools can be developed in par-
allel with the prototype, and then used with the final simula-
tion. This allows direct comparison between the results from
the prototype and the final simulation, giving the developer
additional confidence in the correctness of their simulation.

This kind of validation between multiple simulations is
also useful when modifying an existing simulation—for ex-
ample, when updating it to match a new version of the un-
derlying model, or when reimplementing it using a different
language or environment. Deliberately implementing a sim-
ulation using different approaches can help to reveal under-
specified aspects of the underlying model [2].

In some cases, it may even be possible to feed real-
world data into the framework, allowing direct comparison
between the simulation and the original domain. This is only
possible when the data in question exists in the same form in
the domain and the simulation; that is, the model is not too
far abstracted from the domain.

5. Future Work
In the near future, we plan to develop our prototype frame-
work into a reliable, easy-to-use substrate for the future de-
velopment of complex systems simulations. Projects that
will make use of the framework over the next few months
cover a variety of areas including plant biology, immunol-
ogy, sociology and electrical engineering. The framework
will be developed and maintained as a sustainable open-
source project under the aegis of CoSMoS.

The biggest problem with the prototype is its poor per-
formance in the face of very large numbers of simulation
objects. This will be addressed by the use of existing tech-
nologies for efficient data storage and communication, and
by the implementation of smart client- and server-side fil-
tering techniques to minimise the amount of data sent while
avoiding round-trips in network communication—the great-
est performance concern for distributed simulations. These
filtering techniques could make use of fuzzy, predictive ap-
proaches to estimate which data will be required by which
simulation components.

We also need to provide client bindings to the system
for more languages, including all those used in our exist-
ing simulations. These will take advantage of language id-
ioms where appropriate. In OO languages such as Java and
Python, annotations and reflection could be used to allow
properties of simulation objects to be easily exported. In con-
current languages such as occam-π, a message-passing in-
terface could be provided to allow an efficient, event-driven
programming style for simulation components.

Looking further ahead, the framework could offer a num-
ber of more sophisticated facilities:

Distributed simulation: in its simplest sense, the frame-
work could provide a communication mechanism for dis-
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tributing a single simulation across a cluster, subsuming
the technologies already developed for this in CoSMoS.
However, it could also allow co-simulation, where dif-
ferent parts of a simulation are simulated using different
tools, or multiscale simulation, where different parts of
the system are modelled at different scales in space or
time. The framework would allow consistent control, vi-
sualisation and analysis of a distributed simulation.

Cluster integration: the framework could be integrated
with cluster management or cloud computing systems,
allowing the automatic scheduling and management of
distributed simulations. In cases where many simulations
must be run with different parameter settings—for ex-
ample, when performing sensitivity analysis—the frame-
work could launch simulations and collate results auto-
matically.

Property manipulation: it would be straightforward to al-
low simulation objects’ properties to be altered as well
as read, with the alterations directly affecting the pa-
rameters’ values in the simulation. This would allow the
construction of visualisations that allowed the simulation
user to interact directly with objects—in the same way
that MASON, NetLogo and other tightly-integrated sim-
ulation environments already do—which is useful for de-
bugging and experimenting with a system. Global prop-
erties, or properties that affect a class of simulatiion ob-
jects, could be placed in a shared simulation object that
is read by all interested parties.

Time travel: at present the store’s idea of time only follows
the simulation, but it would also be possible for the store
to keep a (limited) history of the simulation, allowing the
user to wind the visualisation back and forth in time. Fur-
ther integration with the simulation could allow the simu-
lation to be paused or single-stepped through interactions
with the store.

Meta-analysis: since the object store contains informa-
tion about relationships between simulation objects, the
framework could attempt to analyse these relationships
to automatically identify clusters of related objects and
patterns of interaction. These could be used for profiling
the simulation—to identify performance problems with
the simulation design, or automatically load-balance a
distributed simulation—or could be used to automati-
cally identify potential emergent properties of the com-
plex system under study.
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